
There and Back Again:
A Netlist’s Tale with Much Egraphin’

Gus Henry Smith†, Zachary D. Sisco‡, Thanawat Techaumnuaiwit‡, Jingtao Xia‡, Vishal
Canumalla†, Andrew Cheung†, Zachary Tatlock†, Chandrakana Nandi§, Jonathan Balkind‡

† University of Washington ‡ University of California, Santa Barbara § Certora, Inc.

{gussmith, vishalc, acheung8, ztatlock}@cs.washington.edu {zsisco, thanawat, jingtaoxia, jbalkind}@ucsb.edu

chandra@certora.com

ABSTRACT
EDA toolchains are notoriously unpredictable, incomplete, and
error-prone; the generally-accepted remedy has been to re-imagine
EDA tasks as compilation problems. However, any compiler frame-
work we apply must be prepared to handle the wide range of EDA
tasks, including not only compilation tasks like technologymapping
and optimization (the “there” in our title), but also decompilation
tasks like loop rerolling (the “back again” ). In this paper, we advo-
cate for equality saturation—a term rewriting framework—as the
framework of choice when building hardware toolchains. Through
a series of case studies, we show how the needs of EDA tasks line up
conspicuously well with the features equality saturation provides.

1 INTRODUCTION
Hardware development toolchains are notorious for their unpre-
dictability [12], incompleteness [17], and incorrectness [4]. These
issues stem from the fact that most common toolchains do not treat
EDA tasks as compilation problems, and instead often use ad hoc,
unprincipled approaches to solving each problem. Existing projects
such as MLIR CIRCT [1], LLHD [15], and Calyx [13] have made
great strides towards reframing and restructuring hardware design
tools using consistent compiler frameworks.

Finding an appropriate compiler framework is difficult, as the
EDA tasks that must be supported are diverse. For example, any
framework should certainly be able to capture all standard opti-
mization tasks, such as register retiming, pipelining, and common
subexpression elimination. However, another essential task beyond
standard optimization is technology mapping—the process of imple-
menting a high-level design specification using the actual hardware
primitives available on the target FPGA or ASIC process. To make
things even more complicated, EDA tasks are not always “moving
forward”: recent work has established hardware decompilation as a
valuable tool for design tasks such as speeding up netlist simula-
tions [16]. Thus, an ideal compiler framework must also be able to
easily break and lower between levels of abstraction.

Equality saturation [19] is a compiler framework which has
already proven its prowess in all of these tasks. Equality saturation
is a non-destructive term rewriting technique that uses the e-graph
data structure [10, 11] to compactly store potentially infinitely

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’24, April 28, 2024, San Diego, CA, USA
© 2024 Copyright held by the owner/author(s).

many equivalent terms. Recent work [27, 29] has developed fast and
extensible libraries for efficient equality saturation. Previous work
has shown equality saturation’s ability to implement decompila-
tion [9], procedural abstraction [2], optimization [7, 8, 20, 24, 25, 30],
and mapping [6, 18, 23].

In this position paper, we advocate for the extensive ap-
plication of equality saturation to EDA tasks. In fact, equality
saturation has already shown early promise in being applied to
various EDA tasks, including RTL optimization [5, 14], HLS op-
timization [3], multiplier optimization [21, 26], and repurposing
CGRAs [28]. Ustun et al. also argue for equality saturation in dat-
apath synthesis and optimization [22]. We make a larger claim in
this paper that equality saturation has value beyond optimization
in EDA tasks up and down the stack.

We now present four case studies highlighting different prop-
erties of equality saturation that makes it attractive at different
stages in the hardware design workflow, from technology map-
ping to circuit-level analyses such as retiming and decompilation.
These case studies demonstrate that the operational semantics of
the various stages of the hardware design workflow are intuitively
represented as rewrite rules. Each case study will explore the dif-
ferent properties of equality saturation that makes it attractive for
implementing the different hardware passes.

2 CASE STUDY: HARDWARE LOOP
REROLLING

Recent work considers the problem of hardware loop rerolling,
that is, identifying repeated sequences of logic in a netlist and
rerolling them into loops in higher-level HDL code [16]. This re-
search fits into the larger problem of hardware decompilation, which
lifts netlists to HDL code to help with design and analysis tasks.
Loop rerolling for hardware decompilation uses a sketch-guided
program synthesis technique to synthesize rerolled loops [16]. How-
ever, this technique scales poorly due to its reliance on SMT solvers
to fill in the loop sketches.

Our in-progress work considers hardware loop rerolling through
the lens of rewriting. Consider the following illustration of a rewrite
rule which identifies a repeated logic block G and rewrites it into a
for-loop with G parameterized over the loop variable i:

G G G

𝑎0 𝑏0 𝑎1 𝑏1 𝑎𝑛 𝑏𝑛

𝑐0 𝑐1 𝑐𝑛

for i = 0 .. n

G𝑖

𝑎 [0..𝑛]

𝑏 [0..𝑛]

𝑐 [0..𝑛]𝑎𝑖

𝑏𝑖
𝑐𝑖

⇝...



LATTE ’24, April 28, 2024, San Diego, CA, USA Smith, et al.

While in this example, the indices 𝑎 and 𝑏 appear in monotoni-
cally increasing order on the logic blocks, this may not always be
the case, which would make it harder to infer the closed form for the
for-loop. More generally, loop rerolling is particularly challenging
when the initial, unrolled program does not expose any high-level
structure, i.e., the repetitive patterns of the program are obfuscated.
Prior work shows that equality saturation can be used to discover
this latent structure by applying carefully designed rewrite rules [9].
We envision scaling hardware loop rerolling by leveraging similar
techniques.

3 CASE STUDY: STANDARD LIBRARY
COMPONENT IDENTIFICATION

This case study is about finding components from a hardware stan-
dard library within a compiled artifact such as a netlist. The com-
piler optimizes the component in ways that using a sub-graph-
isomorphism algorithm for identification will fail, and, for large
enough designs, will not scale. An e-graph solves these problems
in two ways: (1) it allows us to explore semantically equivalent
versions of the same design to find the one where we can extract
the standard library component and (2) it allows sub-graphs to
be extracted out more efficiently due to the internal union-find
structure. For standard library component identification, we can
directly take the standard library component we are looking for
and turn it into a rewrite rule within the egglog equality saturation
engine [29]. For example, here is an illustration of the rewrite rule
for a half adder:

𝑖0 𝑜0

𝑖1 𝑜1

⇝

𝑖0

HalfAdder 𝑜0,1

𝑖1

Within this rewrite rule, 𝑖0 and 𝑖1 are any arbitrary circuits. Equality
saturation runs this rewrite rule (along with standard rules for
Boolean algebra) on a larger design which pattern-matches parts of
the design with the half-adder definition—rewriting that definition
into an abstract half-adder component.

Challenges with this approach include matching on components
where the compiler optimized away parts of the module or fused
two modules together which share resources. Anti-unification tech-
niques, as presented in babble [2], can help with the problem of
partial matching. Further, a generalized problem of standard library
identification is procedural abstraction, finding repeated instances
of a procedure where there is no standard library as reference to
match against.

4 CASE STUDY: SCALING TECHNOLOGY
MAPPING VIA LIBRARY LEARNING

Our previous work Lakeroad [17] demonstrates how the process
of FPGA technology mapping—converting a high-level hardware
design description into an implementation using FPGA-specific
primitives—can be vastly improved via program synthesis. However,
program synthesis is known to face scaling issues. Meanwhile, the
process of technology mapping must scale to potentially massive
hardware designs.

With equality saturation, we can scale these state-of-the-art
technology mapping techniques via the application of library learn-
ing [2]. Library learning is the process of finding abstractions com-
monly used throughout a corpus of code—in our setting, finding
hardware modules used repeatedly within a larger design. Within
the equality saturation framework, library learning can be ex-
pressed simply as a rewrite which converts an expression into
an abstracted module applied to a list of concrete inputs:

apply𝑖0

𝑖1

𝑜0

𝑖0 𝑖1

⇝

When applied repeatedly across a large design, this rewrite will find
larger and larger abstracted submodules. By default, equality satu-
ration deduplicates identical expressions, allowing us to discover
submodules which are frequently reused across the design. These
abstracted submodules are then perfect candidates for program
synthesis. Furthermore, we can use information about frequency
of appearance and other contextual information in the e-graph to
filter and rank candidates. Thus, equality saturation gives us a path
towards scaling currently limited state-of-the-art techniques using
simple algebraic rewrites and its native deduplication ability.

5 CASE STUDY: CIRCUIT RETIMING
With an algebraic representation of the netlist we form a bidirec-
tional rewrite rule that captures forward and backward retiming:

Comb
𝑎

𝑏
Comb

𝑎

𝑏

𝑅0

𝑅1

𝑅2

↭

where Comb is a combinational gate. With only these two rules,
equality saturation explores all possible ways of arranging regis-
ters in the design through non-destructive rewrites. Then, we use
ILP (Integer Linear Programming) to retime the circuit according
to a cost function—following prior work that effectively uses ILP
extraction from an e-graph [3, 24].

The other side of retiming is undoing the effects of a retimed
cicuit by, for example, moving all registers as close as possible
to their source. This pass is useful for decompilation by moving
registers outside of a section of combinational logic to expose latent
structure for other analyses such as standard library component
identification and loop rerolling (Sections 2 and 3).

6 CONCLUSION
We present case studies demonstrating how equality saturation
can be used to improve state of the art techniques for mitigating
four concrete hardware challenges: decompilation through loop
rerolling, library component identification and technologymapping
through library learning, and optimum circuit retiming through
efficient state space exploration and ILP extraction. We are already
working on some of these topics and hope this paper encourages
other researchers to consider equality saturation as a technique to
mitigate EDA challenges in the future.



There and Back Again:
A Netlist’s Tale with Much Egraphin’ LATTE ’24, April 28, 2024, San Diego, CA, USA

REFERENCES
[1] CIRCT Authors. 2024. CIRCT. https://circt.llvm.org/. Accessed 2024-03-06.
[2] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and

Nadia Polikarpova. 2023. babble: Learning Better Abstractions with E-Graphs
and Anti-unification. Proc. ACM Program. Lang. 7, POPL, Article 14 (jan 2023),
29 pages. https://doi.org/10.1145/3571207

[3] Samuel Coward, George A. Constantinides, and Theo Drane. 2022. Automatic
DatapathOptimization using E-Graphs. In 2022 IEEE 29th Symposium on Computer
Arithmetic (ARITH). 43–50. https://doi.org/10.1109/ARITH54963.2022.00016

[4] Yann Herklotz and John Wickerson. 2020. Finding and understanding bugs
in FPGA synthesis tools. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 277–287.

[5] Kuo-Wei Ho, Shao-Ting Chung, Tian-Fu Chen, Yu-Wei Fan, Che Cheng, Cheng-
Han Liu, and Jie-Hong R Jiang. 2023. WolFEx: Word-Level Function Extraction
and Simplification from Gate-Level Arithmetic Circuits. In 2023 IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD). IEEE, 1–9.

[6] Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Gus Henry Smith, Thierry
Tambe, Akash Gaonkar, Vishal Canumalla, Andrew Cheung, Gu-Yeon Wei, Aarti
Gupta, Zachary Tatlock, and Sharad Malik. 2024. Application-level Validation
of Accelerator Designs Using a Formal Software/Hardware Interface. ACM
Trans. Des. Autom. Electron. Syst. 29, 2, Article 35 (feb 2024), 25 pages. https:
//doi.org/10.1145/3639051

[7] Shadaj Laddad, Conor Power, Tyler Hou, Alvin Cheung, and JosephM. Hellerstein.
2023. Optimizing Stateful Dataflowwith Local Rewrites. arXiv:2306.10585 [cs.PL]

[8] Kazuaki Matsumura, Simon Garcia De Gonzalo, and Antonio J Peña. 2023. ACC
Saturator: Automatic Kernel Optimization for Directive-Based GPU Code. arXiv
preprint arXiv:2306.13002 (2023).

[9] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured
CAD models with equality saturation and inverse transformations. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 31–44. https://doi.org/10.1145/3385412.3386012

[10] Charles Gregory Nelson. 1980. Techniques for program verification. Ph. D. Disser-
tation. Stanford, CA, USA. AAI8011683.

[11] Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-producing congruence
closure. In Proceedings of the 16th International Conference on Term Rewriting and
Applications (Nara, Japan) (RTA’05). Springer-Verlag, Berlin, Heidelberg, 453–468.
https://doi.org/10.1007/978-3-540-32033-3_33

[12] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive affine types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
393–407.

[13] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 804–817.

[14] Yan Pi, Hongji Zou, Tun Li, Wanxia Qu, and Hai Wan. 2023. ESFO: Equality
Saturation for FIRRTL Optimization. In Proceedings of the Great Lakes Symposium
on VLSI 2023. 581–586.

[15] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD:
A multi-level intermediate representation for hardware description languages.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 258–271.

[16] Zachary D. Sisco, Jonathan Balkind, Timothy Sherwood, and Ben Hardekopf.
2023. Loop Rerolling for Hardware Decompilation. Proc. ACM Program. Lang. 7,
PLDI, Article 123 (jun 2023), 23 pages. https://doi.org/10.1145/3591237

[17] Gus Henry Smith, Ben Kushigian, Vishal Canumalla, Andrew Cheung, Steven
Lyubomirsky, Sorawee Porncharoenwase, René Just, Gilbert Louis Bernstein,
and Zachary Tatlock. 2024. FPGA Technology Mapping Using Sketch-Guided
Program Synthesis. arXiv preprint arXiv:2401.16526 (2024).

[18] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph
McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. 2021. Pure tensor
program rewriting via access patterns (representation pearl). In Proceedings of the
5th ACM SIGPLAN International Symposium on Machine Programming (Virtual,
Canada) (MAPS 2021). Association for Computing Machinery, New York, NY,
USA, 21–31. https://doi.org/10.1145/3460945.3464953

[19] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
saturation: a new approach to optimization. SIGPLAN Not. 44, 1 (jan 2009),
264–276. https://doi.org/10.1145/1594834.1480915

[20] Samuel Thomas and James Bornholt. 2024. Automatic Generation of Vectorizing
Compilers for Customizable Digital Signal Processors. (2024).

[21] Ecenur Ustun, Ismail San, Jiaqi Yin, Cunxi Yu, and Zhiru Zhang. 2022. Impress:
Large integer multiplication expression rewriting for fpga hls. In 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 1–10.

[22] Ecenur Ustun, Cunxi Yu, and Zhiru Zhang. 2023. Equality Saturation for Datap-
ath Synthesis: A Pathway to Pareto Optimality. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). 1–2. https://doi.org/10.1109/DAC56929.2023.
10247948

[23] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for digital signal processors via equality saturation.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21).
Association for Computing Machinery, New York, NY, USA, 874–886. https:
//doi.org/10.1145/3445814.3446707

[24] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu.
2020. SPORES: sum-product optimization via relational equality saturation
for large scale linear algebra. Proc. VLDB Endow. 13, 12 (jul 2020), 1919–1932.
https://doi.org/10.14778/3407790.3407799

[25] Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony Nowatzki.
2023. Infinity stream: Portable and programmer-friendly in-/near-memory fusion.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. 359–375.

[26] Andy Wanna, Samuel Coward, Theo Drane, George A Constantinides, and
Miloš D Ercegovac. 2023. Multiplier Optimization via E-Graph Rewriting. arXiv
preprint arXiv:2312.06004 (2023).

[27] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. egg: Fast and extensible equality saturation. Proc.
ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages. https://doi.org/10.
1145/3434304

[28] Jackson Woodruff, Thomas Koehler, Alexander Brauckmann, Chris Cummins,
Sam Ainsworth, and Michael FP O’Boyle. 2023. Rewriting History: Repurposing
Domain-Specific CGRAs. arXiv preprint arXiv:2309.09112 (2023).

[29] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli
Rosenthal, Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying
Datalog and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI, Article 125
(jun 2023), 25 pages. https://doi.org/10.1145/3591239

[30] Xiaolei Zhao, Zhaoyun Chen, Yang Shi, Mei Wen, and Chunyun Zhang. 2023.
Automatic End-to-End Joint Optimization for Kernel Compilation on DSPs. In
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

https://circt.llvm.org/
https://doi.org/10.1145/3571207
https://doi.org/10.1109/ARITH54963.2022.00016
https://doi.org/10.1145/3639051
https://doi.org/10.1145/3639051
https://arxiv.org/abs/2306.10585
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1145/3591237
https://doi.org/10.1145/3460945.3464953
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1109/DAC56929.2023.10247948
https://doi.org/10.1109/DAC56929.2023.10247948
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.14778/3407790.3407799
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3591239

	Abstract
	1 Introduction
	2 Case Study: Hardware Loop Rerolling
	3 Case Study: Standard Library Component Identification
	4 Case Study: Scaling Technology Mapping via Library Learning
	5 Case Study: Circuit Retiming
	6 Conclusion
	References

