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Abstract

FPGA technology mapping is the process of implement-

ing a hardware design expressed in high-level HDL (hard-

ware design language) code using the low-level, architecture-

specific primitives of the target FPGA. As FPGAs become

increasingly heterogeneous, achieving high performance

requires hardware synthesis tools that better support map-

ping to complex, highly configurable primitives like digital

signal processors (DSPs). Current tools support DSP map-

ping via handwritten special-case mapping rules, which are

laborious to write, error-prone, and often overlook map-

ping opportunities. We introduce Lakeroad, a principled ap-

proach to technology mapping via sketch-guided program

synthesis. Lakeroad leverages two techniques—architecture-

independent sketch templates and semantics extraction from

HDL—to provide extensible technologymappingwith stronger

correctness guarantees and higher coverage of mapping op-

portunities than state-of-the-art tools. Across representative

microbenchmarks, Lakeroad produces 2–3.5× the number of

optimal mappings compared to proprietary state-of-the-art

tools and 6–44× the number of optimal mappings compared

to popular open-source tools, while also providing correct-

ness guarantees not given by any other tool.
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Figure 1. Even given a simple input design (input 1), the

state-of-the-art (SOTA) hardware synthesis tool for Xilinx

FPGAs frequently fails to efficiently use programmable

primitives like DSPs. Lakeroad, on the other hand, can utilize

all features of programmable primitives given just a short

description of an FPGA architecture (input 2) and the vendor-

provided simulation models of the primitive (input 3).
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1 Introduction

Given a high-level hardware design specification (e.g., ex-

pressed in behavioral Verilog), FPGA technology mappers

search for an equivalent low-level implementation in terms

of the target FPGA’s primitives. See Figure 1 for an exam-

ple, where the high-level, behavioral add_mul_and mod-

ule (“input 1”) is converted into FPGA-specific implementa-

tions (“their output” and “our output”) using Xilinx-specific

DSP48E2 and LUT2 primitives.

Historically, FPGAs consisted of relatively simple primi-

tives, such as lookup tables (LUTs) and carry chains. Tools

like ABC [14, 30, 37] automatically map to these basic primi-

tives by translating designs to a library of simple logic gates

and then packing those gates into LUTs.

However, FPGAs are becoming increasingly heteroge-

neous via the inclusion of specialized and diverse primitives

such as digital signal processors (DSPs). Utilizing these spe-

cialized primitives effectively is now crucial for achieving

high performance [49]. These specialized primitives make

FPGA technology mapping far more challenging since tech-

nology mappers must now explore a much larger search

space while also satisfying each primitive’s complex set of re-

strictions and dependencies. For example, Xilinx’s DSP48E2

is a multifunction DSP with nearly 100 ports and parameters,

whose numerous configurations enable support for a large

variety of computations. The manual for the DSP48E2 alone

is 75 pages long, where considerable text details the complex

restrictions between the settings of the nearly 100 ports and

parameters.

Existing technology mapping tools frequently fail to map

designs to specialized primitives like DSPs, requiring manual

work for the hardware designer to recover the performance

of their design. While existing toolchains have the ability to

automatically infer locations where specialized primitives

can be used in large designs, inference often fails [1, 2, 4].

In these cases, the designer can either accept lower perfor-

mance and higher resource utilization, or they can perform

what we call partial design mapping. During partial design

mapping, the designer manually identifies and separates out

the module that should be mapped to a DSP. They can at-

tempt to re-run technology mapping on that module alone,

in the hopes that mapping succeeds. Yet existing toolchains

often fail even in the partial design mapping case: Figure 1

shows a simple module add_mul_and which should fit on a

single DSP48E2 according to the DSP’s manual, but is instead

mapped to multiple DSPs and LUTs by current state-of-the-

art tools.
1
In the worst case, hardware designers are forced

to manually instantiate complex primitives by hand, e.g., by

looking through the 75-page DSP48E2 user manual to manu-

ally configure the DSP’s dozens of ports and parameters.

1
Licensing restrictions forbid naming the specific proprietary tools, but

they are familiar, standard packages used by many hardware designers.

Current state-of-the-art technology mappers are imple-

mented via ad hoc, handwritten pattern matching proce-

dures, which fall short in three primary ways. First, as we

saw above, they are incomplete: they miss many mapping

opportunities, even across microbenchmarks based on ven-

dor documentation. Second, they do not provide strong

correctness guarantees: recent work highlights the sig-

nificant number of bugs found across all major hardware

synthesis tools [24]. Third, they are difficult to extend:

each new complex primitive requires supporting detailed se-

mantics and adding hundreds of new, special-case syntactic

pattern matching rules [50].

This paper’s key observation is that technology mapping

is well-suited for the application of automated reasoning

procedures—specifically, program synthesis [23]. We observe

that the configuration space of a programmable FPGA prim-

itive is essentially a small, bespoke programming language,

and that program synthesis could be applied to automat-

ically generate primitive configurations. We explore how

program synthesis can simplify the design and implementa-

tion of FPGA technology mappers while providing correct,

extensible, and more complete support for mapping to

diverse, highly configurable primitives like DSPs. Program

synthesis techniques rely on automated theorem provers

like SAT and SMT solvers [8, 17] to automatically generate

programs satisfying a given specification. We demonstrate

how sketch-guided program synthesis [41] can be adapted

for FPGA technology mapping, leveraging the Rosette [46]

program synthesis framework.

Sketch-guided program synthesis requires encoding the

semantics of the target language: in our case, a machine-

readable, mathematical model specifying the behavior of

each FPGA-specific primitive being mapped to. In a typical

synthesis tool, which generates programs for a single target

language, this is a one-time cost. However, in our setting,

each new FPGA primitive introduces yet another new target

language, which in turn requires extending the tool to encode

yet another formal semantics.

To support correct, extensible, and more complete technol-

ogy mapping, we propose automating this process with se-

mantics extraction fromHDL, adapted frompast work [16],

to automatically extract complete primitive semantics from

vendor-published HDL models (Figure 1, “input 3”). Tradi-

tionally, such models have been used only for simulation

and validation after technology mapping; we show that us-

ing the semantics to implement technology mapping with a

program-synthesis-based approach yields substantially more

complete FPGA technology mapping.

Sketch-guided program synthesis also requires sketches,

which are partially complete programs with “holes” to be

filled in by the solver. Sketches primarily serve to scale syn-

thesis by constraining the set of programs that solvers ex-

plore when searching for one that satisfies the given specifi-

cation, i.e., performance at the cost of completeness. In our

2
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setting, sketches correspond to arrangements of primitives,

using holes as placeholders for some of the primitives’ ports

and parameters. This could be a single DSP with holes for

its ports and parameters (as in the example in Section 2.2),

or a number of LUTs with holes for their LUT memories, or

even a mixture of LUTs, DSPs, and carry chains. The syn-

thesizer “fills in the holes” as necessary for the low-level

FPGA-specific primitive to implement a given high-level

behavioral design fragment. Unfortunately, developing ef-

fective sketches still requires synthesis expertise [11, 47].

Naïvely, our approach would also require new sketches for

each new FPGA primitive we target.

To address these challenges, we introduce architecture-

independent sketch templates. Hardware designs are of-

ten implemented using high-level blueprints that are similar

across most FPGA architectures—sketch templates capture

these blueprints andmake them reusable across architectures.

Therefore, by using sketch templates, we greatly reduce the

overhead of supporting new architectures and diverse primi-

tives. Typically, when adding support for a new primitive or

FPGA architecture in Lakeroad, the hardware designer need

not write or modify any sketch templates.

We leverage semantics extraction fromHDL and architecture-

independent sketch templates to build Lakeroad,
2
a new

FPGA technology mapper based on program synthesis.

Lakeroad’s prototype implementation automatically im-

ports semantics for the LUTs, arithmetic carry chains, and

DSPs of the Xilinx UltraScale+, Lattice ECP5, Intel Cyclone 10

LP, and SOFA [43] FPGA architectures. The only additional

user input to Lakeroad is a short architecture description that

lists the target FPGA’s primitives (Figure 1, “input 2”). Archi-

tecture descriptions only need to be written once per archi-

tecture, and Lakeroad pre-supplies architecture descriptions

for the aforementioned architectures. With the automati-

cally extracted primitive semantics and the user-provided

architecture description, we demonstrate that Lakeroad is

more complete than proprietary tools on a variety of mi-

crobenchmarks that are representative of program fragments

implemented with DSPs during partial design mapping. In

particular, Lakeroad maps up to 3.5×more microbenchmarks

than state-of-the-art tools for Xilinx, Lattice, and Intel, and

up to 44× more microbenchmarks than Yosys.

This paper makes the following key contributions:

• The novel application of program synthesis to produce

a technology mapper—Lakeroad—that is more correct,

complete, and extensible than state-of-the-art tools.

• A technique for applying semantics extraction from

HDL to automatically generate models of hardware usable

by formal automated reasoning tools.

• The concept of architecture-independent sketch tem-

plates, which capture common patterns in hardware de-

sign in an architecture-independent way, plus primitive

2
Lakeroad is publicly available at https://github.com/uwsampl/lakeroad.

interfaces and architecture descriptions, the abstrac-

tions underlying these templates.

• A formalization of the Lakeroad toolchain and an argu-

ment for its correctness and sketch-completeness.

• The first notion of technology mapping completeness

for FPGA compilers.

• Empirical comparisons of Lakeroad and existing hard-

ware synthesis tools to evaluate both their relative com-

pleteness and ease of extensibility.

In the following sections, we walk through a real-world ex-

ample using both existing tools and Lakeroad and highlight

Lakeroad’s design and key features (Section 2); formalize

Lakeroad and demonstrate its correctness (Section 3); de-

scribe Lakeroad’s implementation (Section 4); and evaluate

Lakeroad on its completeness of mapping, extensibility, and

expressiveness (Section 5) . Section 6 discusses related work,

and Section 7 concludes.

2 Overview

We now walk through an example of how current FPGA

technology mapping tools can fail a hardware designer (Sec-

tion 2.1) and how Lakeroad overcomes these limitations (Sec-

tion 2.2). In the process, we provide a high-level overview of

Lakeroad’s main components.

2.1 Compiling a Design to a DSP with Existing Tools

Consider the following scenario: A hardware designer is de-

signing a large hardware block for the Xilinx UltraScale+

family of FPGAs. The designer is specifically aiming to use

the UltraScale+’s specialized DSP48E2 units, which can im-

plement combined multiplication, arithmetic, and logic op-

erations, as captured in this simplified block diagram [51]:

The designer’s hardware block involves the computation

(d+a)*b&c, which the manual states is implementable with

a single DSP. In particular, suppose the design consists of

four separate instances of the following computation:

for(i=0; i<4; i++) begin
r[i] <= (d[i] + a[i]) * b[i] & c[i];
end

It would be reasonable for the designer to expect the design

to use a total of four DSPs.

Current tools fail. After compiling the design with exist-

ing tools, the designer is frustrated to find that the compiler

returns a design that uses more resources than anticipated.

It does use four DSPs, but it also uses 128 registers (which

hold state) and 64 lookup tables (LUTs, which implement

logic functions). The compiler has thus failed to fully

3
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utilize the DSP—it has not configured a DSP48E2 to imple-

ment (d+a)*b&c but has instead implemented a portion of

the computation with LUTs and registers. The designer now

faces a choice: either accept the result or attempt to coax the

compiler into returning a more optimal design.

Coaxing the compiler, to no avail. Though many may

choose to accept a less optimal result, this tenacious
3
tries to

coax the compiler into giving the expected results by placing

the computation of interest into a separate module:

// add_mul_and.v: computes (a+b)*c&d in two clock cycles.
module add_mul_and(input clk, input [15:0] a, b, c, d,

output reg [15:0] out);
reg [15:0] r;
always @ (posedge clk) begin

r <= (a+b)*c&d; out <= r;
end
endmodule

This allows the designer to apply specific optimizations while

mapping the module—a process we call partial design map-

ping. They attempt various strategies, including annotating

the module with Xilinx’s use_dsp Verilog attribute (to force

the compiler to use a DSP where possible) and using a differ-

ent synthesis directive (to apply a more resource-intensive

synthesis procedure). Despite these efforts, the compiler

still cannotmap the design to a single DSP, instead using

one DSP, 32 registers, and 16 LUTs. Again, the designer must

decide: give up and accept suboptimal results, or press on?

Manual compilation. The hardware designer presses on
and now has only one option remaining: manually instantiat-

ing a DSP48E2 with the desired behavior. Skimming through

the daunting 75-page DSP48E2’s online user manual, the de-

signer quickly discovers that configuring even the “pre-add”

a+b requires correctly setting multiple ports and parameters

(INMODE, AMULTSEL, BMULTSEL, and PREADDINSEL), whose de-
scriptions span 10+ pages and multiple tables. Correctly con-

figuring the subsequent multiplier and logic unit proves even

more difficult and time-consuming. After configuring the

computational units, the designer must still manually ensure

correct pipelining of the 10+ pipeline registers. After hours

of frustration, a configuration is found that seems to work,

which the designer inserts into the design. Precious time has

been wasted, most of which will need to be repeated to con-

figure the DSP again. Making matters worse, the designer

has no formal guarantees about the correctness of this

DSP configuration. It may work in a few simulated test

cases, but are there corner cases that have been missed?

2.2 Compiling a Design to a DSP with Lakeroad

Lakeroad can save hardware designers the great effort in-

volved in manual DSP configuration while also providing

correctness guarantees. Let us imagine how the designer in

this example, frustrated by conventional tools, can instead

3
This may not be purely a personal preference. For example, a hardware

design simply may not fit on an FPGA without manual optimizations!

Figure 2. The components within Lakeroad.

proceed using Lakeroad during partial design mapping. After

putting add_mul_and into its own module, the designer calls

Lakeroad from the command line:

$ lakeroad --template dsp \
--arch-desc xilinx-ultrascale-plus.yml \
add_mul_and.v

The lakeroad command outputs add_mul_and_impl, an im-

plementation of add_mul_and that uses a single UltraScale+

DSP48E2:

module add_mul_and_impl(input clk, input [15:0] a, b, c, d,
output [15:0] out);

DSP48E2 #(
.ACASCREG(32'd0), .ADREG(32'd0), .ALUMODEREG(32'd0),
.AMULTSEL("AD"), .AREG(32'd0), .AUTORESET_PATDET("NO_RESET"),
// ...plus 30+ more parameters

) DSP48E2_0 (
.A({ 14'h0000, a }), .ACIN(30'h00000000), .ALUMODE(4'hc),
.B({ 2'h0, b }), .BCIN(18'h00000), .C({ 32'h00000000, c }),
.CARRYCASCIN(1'h0), .CARRYIN(1'h0), .CARRYINSEL(3'h6),
// ...plus 30+ more ports

);
endmodule

Unlike current compilers, Lakeroad has produced an imple-

mentation using a single DSP48E2 by utilizing more of the

DSP’s features. Importantly, this compiled design is also

formally guaranteed to implement the input add_mul_and
design.

How does Lakeroad provide verified, more complete sup-

port for the DSP48E2 over existing tools? At the core of

Lakeroad’s correctness and completeness is sketch-guided

program synthesis, a technique that begins with a program

sketch, which captures a rough outline of a program and uses

automated reasoning tools (e.g., SMT solvers) to fill in the

sketch’s holes. As shown in Figure 2, Lakeroad uses the fol-

lowing three-step process to generate an efficient and correct

DSP48E2 implementation of the add_mul_and design.

4



FPGA Technology Mapping Using Sketch-Guided Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Step 1: Generating a Sketch. In the add_mul_and exam-

ple, Lakeroad generates the following sketch, which we refer

to as sketch:4

module sketch(input clk, input [15:0] a, b, c, d,
output [15:0] out);

DSP48E2 #(
.ACASCREG(??), .ADREG(??), .ALUMODEREG(??), .AMULTSEL(??),
.AREG(??), .AUTORESET_PATDET(??), ...

) DSP48E2_0 (
.A({ 14'h0000, a }), .ACIN(??), .ALUMODE(??),
.B({ 2'h0, b }), .BCIN(??), .C({ 32'h00000000, c }),
.CARRYCASCIN(??), .CARRYIN(??), .CARRYINSEL(??), ...

);
endmodule

This sketch consists of a single DSP48E2 instance with holes

(represented by ??) serving as placeholders for most of its

ports and parameters. It is easy to see the parallels between

sketch and add_mul_and_impl; sketch is simply add_mul_-
and_implwith holes. But how does Lakeroad generate sketch
in the first place?

To maximize portability across architectures, Lakeroad

does not store sketches like sketch directly; instead, it gen-

erates sketches from architecture-independent sketch tem-

plates. Instead of storing the preceding UltraScale+–specific

sketch, Lakeroad generates the sketch from the DSP sketch

template, which the designer has chosen to use with the

--template dsp flag. A simplified form of this template

looks like the following:

module dsp_sketch_template(input clk,
input [n-1:0] a, b, c, d,
output [n-1:0] out);

DSP dsp_instance(.clk(clk), .A(a), .B(b), .C(c), .D(d), .out(out));
endmodule

Sketch templates capture hardware design patterns that

are common across FPGA architectures in an architecture-

independent way. dsp_sketch_template, for example, cap-

tures a basic pattern, i.e., instantiating a single DSP. Lakeroad

includes sketch templates of varying complexity, from the

simplicity of the one above to the complexity of LUT-based

multipliers. Though new sketch templates can be added eas-

ily, in most cases (as in this example) users can simply apply

Lakeroad’s provided templates.

To specialize dsp_sketch_template into sketch, Lakeroad
translates the sketch template’s generic DSP primitive inter-

face into an UltraScale+–specific DSP48E2 using the Ultra-

Scale+ architecture description. The generic DSPmodule is

an instance of a primitive interface: a Lakeroad-introduced

abstraction that captures the similarities between primitives

across diverse FPGA architectures. For example, Lakeroad’s

DSP primitive interface captures the facts that DSPs on all

FPGA platforms generally have two to four data inputs (cap-

tured by A–D) and a clock input (captured by clk). To convert
the sketch template’s DSP primitive interface instance into

a DSP48E2, Lakeroad utilizes the Xilinx UltraScale+ archi-

tecture description, which the designer has pointed to with

4
Though this example is presented in a Verilog-like language, Lakeroad’s

sketches are actually encoded in a Racket DSL that resembles structural

Verilog.

the --arch-desc xilinx-ultrascale-plus.yml flag. An
architecture description specifies how Lakeroad’s various

primitive interfaces are implemented for a given architecture.

The following simplified snippet of the UltraScale+ archi-

tecture description, for example, tells Lakeroad that, when

generating a sketch for UltraScale+, instances of the DSP

primitive interface should be implemented with a DSP48E2:

- interface: {name: DSP, params: { out-width: 48, a-width: 30, ...}}
holes: [?ACASCREG, ?ADREG, ?ALUMODEREG, ?AREG, ...]
implementation:

module: DSP48E2
ports: [{ name: A, bitwidth: 30, value: A }, ...]
parameters: [{ name: ACASCREG, value: ?ACASCREG }, ...]
outputs: { O : P }

Thus, while converting dsp_sketch_template into sketch,
Lakeroad reads this architecture description and converts

the single DSP instance into a DSP48E2, filling the ports and

parameters with the concrete values and holes contained in

the architecture description. Architecture descriptions are

usually short (100-400 LoC) and written only once per FPGA

architecture; Lakeroad already contains such descriptions

for Xilinx UltraScale+, Lattice ECP5, Intel Cyclone 10 LP, and

the open-source FPGA SOFA [43].

To generate a sketch, Lakeroad takes an architecture-

independent sketch template and specializes it using an ar-

chitecture description. Once the sketch is ready, the designer

can move on to synthesis.

Step 2: Program Synthesis. The next step fills in the holes
to generate a complete, correct hardware design, which is

done automatically using a technique called program syn-

thesis. Program synthesis is the process of using automated

reasoning tools (like SMT solvers) to generate correct pro-

grams by encoding program generation as a constraint solv-

ing problem. In our add_mul_and example, Lakeroad, aided

by Rosette [45, 46], generates a query like the following:
5

∃ ACASCREG, ADREG, ... .∀inputs.
add_mul_and(inputs) = sketch(inputs, ACASCREG, ADREG, ...)

The query asks: are there concrete values for ACASCREG,
ADREG, etc., that will make our sketch’s behavior equiva-

lent to the input design’s behavior on all inputs? If the solver

finds such values, Lakeroad can use them to fill the holes

in the sketch and produce a compiled design. However, if

Lakeroad tries to pass the preceding formula to an SMT

solver, the solver will throw an error since the query is not

expressed at a level it understands, viz., as equalities between

bitvector expressions, using simple Boolean or arithmetic

operations. While it is conceivable that add_mul_and could

be converted to a bitvector expression since its core compu-

tation is already expressed as (a+b)*c&d, it is unclear how
to express sketch as an expression over bitvectors. In par-

ticular, Lakeroad must express bitvector-level semantics for

Xilinx’s DSP48E2 primitive.

To generate bitvector-level semantics for complex FPGA

primitives, Lakeroad introduces the concept of semantics

5
We formalize this synthesis query and explain it precisely in Section 3.

5
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extraction. Rather than requiring manual effort to encode

the semantics of the underlying hardware, which is notori-

ously difficult even for experts [10], Lakeroad’s key insight

is that these challenges can be avoided altogether by ex-

tracting low-level semantics directly from vendor-supplied

simulation and verification models. Lakeroad builds on in-

ternal passes in Yosys [50] to automatically extract solver-

ready semantics from these vendor-provided HDL models,

which we detail in Section 4.4. For the add_mul_and example,

the DSP48E2’s semantics have already been imported into

Lakeroad. Semantics need to be imported only when adding

support for a new architecture, i.e., about as infrequently

as writing a new architecture description. In most cases,

Lakeroad users can rely on already-imported semantics.

With the sketch generated and the DSP48E2’s semantics

imported, program synthesis can begin. Lakeroad utilizes

Rosette to drive program synthesis, as detailed in Section 3. In

our example, Rosette returns a configuration for theDSP48E2.

The last step, then, is to convert the compiled design to

Verilog.

Step 3: Compilation to Verilog. Compiling Lakeroad’s

internal representation into Verilog is a purely one-to-one

syntactic mapping; no optimizations are done at this stage,

reducing the likelihood that bugs could be inserted. In our

example, the final Verilog produced results in the add_mul_-
and_impl we saw at the start of Section 2.2.

In summary. Lakeroad delivered an implementation of

the designer’s add_mul_and module, improving upon both

state-of-the-art compilers and manual approaches in multi-

ple ways. Lakeroad’s implementation is significantly more

resource-efficient than the state-of-the-art compiler’s—one

DSP versus one DSP, 32 registers, and 16 LUTs. Lakeroad

delivered its implementation in mere seconds, compared to

the hours to days of work that manually instantiating a DSP

might take. Lastly, Lakeroad’s implementation is formally

guaranteed to be correct. Meanwhile, Lakeroad did all of

this while requiring no input from the user other than the

Verilog to be compiled.

3 Formalization

Wenow formalize Lakeroad with functions 𝑓lr and 𝑓
∗
lr
, and

use these models to argue for the correctness and partial com-

pleteness of Lakeroad. We first define 𝑓lr (Section 3.1) and

then motivate and define the language ℒlr, specify its syn-

tax and semantics, and define behavioral (ℒbeh), structural

(ℒstruct), and sketch (ℒsketch) sublanguages (Section 3.2).

We next explain the underlying queries Lakeroad uses to

synthesize hardware programs that meet the desired speci-

fication (Section 3.3). We demonstrate the correctness and

partial completeness of 𝑓lr, enumerate our Trusted Comput-

ing Base (Section 3.4) and extend 𝑓lr to 𝑓 ∗
lr
, which ensures

the generated program’s semantics matches the design over

multiple timesteps (Section 3.5). Finally, we highlight poten-

tial future applications that could be built on this section’s

formalization (Section 3.6).

3.1 The Lakeroad Function 𝑓lr

Wemodel the execution of Lakeroadwith the partial function

𝑓lr : Sketch × ℒbeh × Time ⇀ ℒstruct,

where 𝑓lr (Ψ, 𝑑, 𝑡) invokes Rosette to synthesize a 𝑡-cycle

implementation of behavioral design 𝑑 using sketch Ψ to

guide the search, where a 𝑡-cycle implementation of 𝑑 is a

program that is equivalent to 𝑑 at clock cycle 𝑡 . By not requir-

ing program equivalence before clock cycle 𝑡 we allow the

synthesized program’s semantics to differ from the design

during an initialization period (e.g., as the pipeline is being

filled). To get guarantees beyond a single point in time 𝑡 , we

generalize 𝑓lr to 𝑓 ∗
lr
, which synthesizes a program that is

equivalent to the design from time 𝑡 to 𝑡 + 𝑛. We formalize a

sketch Ψ ∈ Sketch as a tuple (𝜓,ℎ), where𝜓 is a program

in ℒsketch and ℎ is a map from the holes in𝜓 to a finite set

of valid hole-free nodes in ℒstruct that can be used to fill

the mapped hole. This mapping ℎ is handled implicitly by

Rosette’s choose and hole constructs and need not be explic-
itly specified by the sketch writer. We write 𝑓lr (Ψ, 𝑑, 𝑡) = 𝑝

to indicate that synthesis succeeded and produced Lakeroad

program 𝑝 . However, it is possible that sketch Ψ cannot im-

plement 𝑑 , in which case the synthesis fails (i.e., returns

UNSAT) and 𝑓lr does not return anything. Design 𝑑 belongs

to ℒlr’s behavioral fragment, ℒbeh (see Section 3.2). When

𝑡 = 0, 𝑓lr synthesizes a combinational design; when 𝑡 > 0, 𝑓lr
synthesizes a sequential design over 𝑡 clock cycles. The rest

of this section considers sequential design synthesis since

its combinational counterpart is a special case covered by

our general approach.

3.2 Defining ℒlr

Lakeroad uses the ℒlr language to translate behavioral HDL

programs to structural, hardware-specific HDL programs.

To facilitate this translation, we designed ℒlr to satisfy the

following properties:

P1. Easy translation to/fromHDLs:wemust be able to trans-

late designs from a behavioral HDL to ℒlr and trans-

late synthesized implementations to a structural HDL.

P2. Support parallel stateful execution: FPGA designs con-

sist of potentially stateful elements executing in paral-

lel. ℒlr must allow unambiguous parallel execution.

P3. Support graph-like program structures: An FPGA com-

ponent’s outputs can bewired tomultiple other compo-

nents, including back to itself. This means that FPGA

programs can form arbitrary graphs, and ℒlr must be

able to express this.

P4. Support for sequential designs: ℒlr must handle designs

that run over multiple clock cycles.
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Prog F ⟨ Id, ⟨Id,Node⟩∗⟩
Node F BV 𝑏 | Var 𝑥

| OP 𝑜𝑝 Id*
| Reg Id (BV 𝑏)
| Prim binds Prog
| ■𝑥

Id 𝑖𝑑 ∈ N
Bitvectors 𝑏 ∈ BV
Variables 𝑥 ∈ LegalVarNames

Operators 𝑜𝑝 ∈ OP𝑏𝑣 ∪OP𝑤

binds 𝑏𝑠 ∈ (Variables ⇀ Id)

Wire op OP𝑤 = {concat,extract, . . .}
Non-wire op OP𝑏𝑣 = {+, −, ×, . . .}

Figure 3. Syntax of ℒlr. ■𝑥 is a syntactic hole, labeled with variable 𝑥 . 𝐴 ⇀ 𝐵 denotes the set of partial functions from 𝐴 to 𝐵.

P5. Support for different architectures: ℒlr must handle

FPGA components from different architectures.

We describe how ℒlr satisfies P1-P5 when we define its

syntax and semantics in the following subsections.

3.2.1 ℒlr’s Syntax. Figure 3 shows the ℒlr syntax. An

ℒlr program Prog consists of a root node ID and a graph of

nodes, each of which is referred to by its ID. A node can be a

constant bitvector, input variable, combinational (pure) oper-

ator, sequential (stateful) register, primitive, or hole. Given a

program 𝑝 = (𝑟, ⟨𝑖𝑑1, 𝑛𝑜𝑑𝑒1⟩ . . . ⟨𝑖𝑑𝑛, 𝑛𝑜𝑑𝑒𝑛⟩), we use the no-
tation 𝑝.𝑟𝑜𝑜𝑡 = 𝑟 , 𝑝.𝑖𝑑𝑠 = {𝑖𝑑1, . . . , 𝑖𝑑𝑛}, and 𝑝 [𝑖𝑑𝑖 ] = 𝑛𝑜𝑑𝑒𝑖 .

We define the free variables of a program 𝑝.𝑓 𝑣 = {𝑥𝑖 } as
the set of variable names occurring in 𝑝’s nodes of the form

(Var 𝑥𝑖 ).6 Finally, we use the notation 𝑝.𝑎𝑙𝑙_𝑖𝑑𝑠 for 𝑝.𝑖𝑑𝑠 to-

gether with 𝑝′ .𝑎𝑙𝑙_𝑖𝑑𝑠 of any subprogram 𝑝′ of 𝑝 (𝑝′ is a
subprogram of 𝑝 if ∃ 𝑗, 𝑛𝑜𝑑𝑒 𝑗 = Prim 𝑏𝑠 𝑝′).
Given a node 𝑛, we specify its inputs with the following

function:

inputs(BV 𝑏) = {},
inputs(Var 𝑥) = {},
inputs(OP 𝑜𝑝 𝑖1 . . . 𝑖𝑛) = {𝑖1, . . . , 𝑖𝑛}
inputs(Reg 𝑖 𝑏𝑖𝑛𝑖𝑡 ) = {𝑖}
inputs(Prim 𝑏𝑠 𝑝′) = {𝑏𝑠 [𝑥] | 𝑥 ∈ domain(𝑏𝑠)}

Note that we use𝐴 ⇀ 𝐵 to denote the set of partial functions

from 𝐴 to 𝐵; given 𝑏𝑠 ∈ 𝐴 ⇀ 𝐵, we write domain(𝑏𝑠) to
denote the set of 𝑥 ∈ 𝐴 s.t. 𝑏𝑠 [𝑥] is defined.

A program 𝑝 is well-formed if and only if all the following

conditions hold:

W1. 𝑝.𝑟𝑜𝑜𝑡 ∈ 𝑝.𝑖𝑑𝑠;

W2. All ids are unique and distinct. (i.e. for any sub-program

𝑝′, 𝑝.𝑖𝑑𝑠 and 𝑝′ .𝑎𝑙𝑙_𝑖𝑑𝑠 are disjoint, and for any two

sub-programs 𝑝′ and 𝑝′′, 𝑝′ .𝑎𝑙𝑙_𝑖𝑑𝑠 is disjoint from

𝑝′′ .𝑎𝑙𝑙_𝑖𝑑𝑠 .)
W3. The inputs of all nodes in 𝑝 are ids of other nodes in

𝑝: ∀𝑖𝑑 ∈ 𝑝.𝑖𝑑𝑠 , inputs(𝑝 [𝑖𝑑]) ⊆ 𝑝.𝑖𝑑𝑠 ;

W4. All primitive nodes contain well-formed programs;

W5. All primitive nodes bind exactly their free variables;

i.e., for Prim 𝑏𝑠 𝑝′, domain(𝑏𝑠) = 𝑝′ .𝑓 𝑣 ; and

6
Note that this does not include variables of sub-programs occurring recur-

sively inside of Prim nodes.

W6. Program 𝑝 is free of combinational loops (formalized

below in Property 1).

Property 1 (Free of Combinational Loops). Formally, a pro-

gram 𝑝 is free of combinational loops if there exists a function

𝑤 : 𝑝.𝑎𝑙𝑙_𝑖𝑑𝑠 → N, that satisfies the following properties

(collectively “monotonicity”):

1. If 𝑝 [𝑖𝑑] = Reg _ _, then𝑤 (𝑖𝑑) = 0;

2. If 𝑝 [𝑖𝑑] = Prim 𝑏𝑠 𝑝′, then𝑤 (𝑖𝑑) > 𝑤 (𝑝′ .𝑟𝑜𝑜𝑡);
3. if 𝑝 [𝑖𝑑] = Prim 𝑏𝑠 𝑝′ and 𝑝′ [𝑖𝑑 ′] = 𝑉𝑎𝑟 𝑥 ,

then𝑤 (𝑖𝑑 ′) > 𝑤 (𝑏𝑠 [𝑥]); and
4. Otherwise (e.g., 𝑝 [𝑖𝑑] = OP 𝑜𝑝 𝑖𝑑𝑠∗),

if 𝑖𝑑 ′ ∈ inputs(𝑝 [𝑖𝑑]), then𝑤 (𝑖𝑑) > 𝑤 (𝑖𝑑 ′).

The function 𝑤 acts as a witness to the absence of combi-

national loops because it is impossible to define a strictly

monotonic function without acyclicity. We consider only

well-formed ℒlr programs.

BV, Var, and OP nodes encode bitvectors, variables, and

operators.

Reg 𝑖𝑑𝑎𝑡𝑎 𝑏𝑖𝑛𝑖𝑡 nodes let ℒlr implement sequential designs

(P4). 𝑖𝑑𝑎𝑡𝑎 is the register’s data input, which updates the

stored value at the positive edge of each clock cycle, and

𝑏𝑖𝑛𝑖𝑡 is the register’s initialization value.

Prim 𝑏𝑠 𝑝 nodes let ℒlr programs use hardware-specific

components from different architectures (P5). The 𝑏𝑠 com-

ponent is a variable map, mapping Vars to input Ids. The 𝑝
component is an ℒlr program that defines the semantics of

the hardware primitive. A Prim node also carries some meta-

data used during compilation to a structural HDL, which we

omit for clarity.

ℒbeh is the concrete behavioral fragment of ℒlr used for

writing specifications; it is formed by excluding Prim nodes

and holes from ℒlr.

ℒstruct is the concrete structural fragment of ℒlr used for

lowering ℒlr to structural HDLs; it is formed by excluding

Reg nodes,OP nodes, and holes from ℒlr, with the following

exception: the 𝑝 term in Prim 𝑏𝑠 𝑝 must always be from the

ℒbeh since it is used to specify the semantics of the Prim node
to the synthesis engine. The behavioral node 𝑝 is not used

during compilation to HDL, and this behavioral expression

does not propagate to the structural HDL output.
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Time 𝑡 ∈ N Env 𝑒 ∈ (Var ⇀ Time → BV)

Interp : Prog → Env → Time → Node → BV

Interp 𝑝 𝑒 𝑡 (BV 𝑏) = 𝑏

Interp 𝑝 𝑒 𝑡 (Var 𝑥) = 𝑒 𝑥 𝑡

Interp 𝑝 𝑒 0 (Reg _ 𝑖𝑛𝑖𝑡) = 𝑖𝑛𝑖𝑡

Interp 𝑝 𝑒 (𝑡 + 1) (Reg 𝑖𝑑 _) = Interp 𝑝 𝑒 𝑡 𝑝 [𝑖𝑑]
Interp 𝑝 𝑒 𝑡 (OP op 𝑖𝑑𝑠) = J𝑜𝑝K (map (_𝑖𝑑 . Interp 𝑝 𝑒 𝑡 𝑝 [𝑖𝑑]) 𝑖𝑑𝑠)
Interp 𝑝 𝑒 𝑡 (Prim 𝑏𝑠 𝑝′) =

let 𝑒′ = _𝑥, 𝑡 ′ . Interp 𝑝 𝑒 𝑡 ′ (𝑝 [𝑏𝑠 𝑥]) in
Interp 𝑝′ 𝑒′ 𝑡 𝑝′ [𝑝′ .𝑟𝑜𝑜𝑡]

Figure 4. Lakeroad’s semantics as pseudocode.

ℒsketch is another sublanguage of ℒlr that is ℒstruct but

also including holes. Let 𝑠 be a program inℒsketch with holes

■𝑥1 , . . . ,■𝑥𝑘 . These holes can be filled with nodes 𝑛1, . . . , 𝑛𝑘
in ℒstruct by replacing each hole■𝑥𝑖 with its corresponding

node 𝑛𝑖 to obtain a complete ℒstruct program, denoted by

𝑠 [■𝑥1 ↦→ 𝑛1, . . .].
The simplicity of this syntax makes translating to and

from HDLs straightforward (P1). Section 4 describes how

Lakeroad implements the translations to and from HDLs.

3.2.2 ℒlr’s Semantics. Before discussing the formal se-

mantics of ℒlr, we present key definitions. We assume a

bitvector type and, for simplicity, we elide bitvector widths.

We represent time as a natural number. A stream is a func-

tion from Time to bitvectors. An environment is a map from

variable names to streams.

We give the semantics for ℒlr as an interpreter in Figure 4.

We define the function Interp to interpret a program 𝑝 in

environment 𝑒 at time 𝑡 and node 𝑛. We do not define seman-

tics for holes, as they are intended to be replaced by other

constructs with well-defined semantics.

Most of the rules are straightforward. A bitvector BV 𝑏

evaluates to its backing bitvector value 𝑏. A variable node

Var 𝑥 in an environment 𝑒 at time 𝑡 evaluates to the value

returned by the stream associated with 𝑥 in 𝑒 at time 𝑡 ; using

function notation, this is denoted by 𝑒 𝑥 𝑡 . A 𝑘-ary operator

node OP 𝑜𝑝 𝑖1 . . . 𝑖𝑘 recursively interprets each operand in

the current environment at the current time and then ap-

plies 𝑜𝑝’s semantics, denoted J𝑜𝑝K, to the resulting values. A
register Reg 𝑖𝑑 𝑏𝑖𝑛𝑖𝑡 has two cases depending on the current

time: at time 𝑡 = 0, a register evaluates to its initial bitvector

value 𝑏𝑖𝑛𝑖𝑡 ; at nonzero times 𝑡 + 1, a register evaluates to the

value produced by the input 𝑖 at the previous timestep 𝑡 . A

primitive Prim 𝑏𝑠 𝑝′ in environment 𝑒 at time 𝑡 is evaluated

by interpreting the program 𝑝′ under the fresh environment

𝑒′ formed by the binding map 𝑏𝑠 .

3.3 Program Synthesis

𝑓lr performs sketch-based program synthesis [41]. Opera-

tionally, we implement the Interp function from Figure 4

in Rosette, a solver-aided host language [46]. Let sketch

Ψ = (𝜓,ℎ) ∈ Sketch, where 𝜓 ∈ ℒsketch has holes ■𝑥𝑖

and ℎ maps𝜓 ’s holes to the set of structural nodes that can

legally fill the mapped hole. Given a design 𝑑 , we query

Rosette if there are nodes 𝑛1, 𝑛2, . . . 𝑛𝑘 such that 𝑛𝑖 ∈ ℎ[■𝑥𝑖 ]
and 𝑝 = Ψ[■𝑥1 ↦→ 𝑛1, . . .] is well-formed and equivalent

to 𝑑 (i.e., we ask Rosette to fill each hole with a node asso-

ciated with the node in ℎ). Program equivalence between

well-formed programs 𝑝 and 𝑑 at time 𝑡 , written 𝑝 �𝑡 𝑑 , is
defined as

𝑝.𝑓 𝑣 = 𝑑.𝑓 𝑣 ∧
∀𝑒 𝑠.𝑡 . domain(𝑒) = 𝑝.𝑓 𝑣,

Interp 𝑝 𝑒 𝑡 𝑝.𝑟𝑜𝑜𝑡 = Interp 𝑑 𝑒 𝑡 𝑑.𝑟𝑜𝑜𝑡 .

In Section 3.5, we use bounded model checking to extend

𝑓lr’s guarantees beyond the single timestep at clock cycle 𝑡 .

3.4 Correctness and Completeness of 𝑓lr

Recall that the synthesis function 𝑓lr is partial. We say that

𝑓lr is correct if it returns a program 𝑓lr (Ψ, 𝑑, 𝑡) = 𝑝 where

𝑝 is a well-formed completion of Ψ = (𝜓,ℎ), meaning 𝑝 =

Ψ[■𝑥1 ↦→ 𝑛1, . . .] such that 𝑛𝑖 ∈ ℎ[■𝑖 ] for all 𝑖 and 𝑝 �𝑡 𝑑 .
Furthermore, we say that 𝑓lr is sketch-complete if 𝑓lr (Ψ, 𝑑, 𝑡)

is defined whenever there exists a well-formed completion 𝑝

of Ψ such that 𝑝 �𝑡 𝑑 . That is, synthesis is correct if it never
returns an erroneous result and sketch-complete if it returns

a correct result whenever one exists.

We have implemented 𝑓lr with Rosette (see Section 3.3),

which guarantees our system is correct and complete under

the following assumptions:

1. Correctness of Rosette and underlying SMT solvers;

2. That our encoding of Lakeroad is bug-free;

3. That the lowering of Interp to SMT formulas by Rosette

always terminates. This is possible when partial eval-

uation of Interp on arguments 𝑝 , 𝑡 and 𝑛 terminates

(independently of the value of 𝑒).

Lemma 3.1. Let 𝑝 be a well-formed program, 𝑒 an environ-

ment, 𝑡 a Time, and 𝑛 be a node belonging to 𝑝 . Then Interp is

primitive recursive (i.e. terminates) in the arguments 𝑝 , 𝑡 , and𝑛.

Proof of Lemma 3.1. Recall that a function 𝑓 (𝑥,𝑦, 𝑧) is primi-

tive recursive in arguments 𝑥 and𝑦 (under a lexicographic or-

dering) if in the definition of 𝑓 every recursive call 𝑓 (𝑥 ′, 𝑦′, 𝑧′)
is made with values (𝑥 ′, 𝑦′) such that 𝑥 ′ < 𝑥 or 𝑥 ′ = 𝑥 ∧𝑦′ <
𝑦. If 𝑥 and 𝑦 are drawn from the natural numbers (or an-

other well-ordered set), then the recursion is guaranteed to

terminate.

Under what order is Interp primitive recursive? Because

our program is well-formed, it must be free of combinational

loops (see Property 1). Formally, this means we have an
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acyclicity witness function 𝑤 : 𝑝.𝑎𝑙𝑙_𝑖𝑑𝑠 → N that mono-

tonically increases in the direction of dataflow in our circuit.

Each node 𝑛 argument passed to Interp has an Id that is

unique and distinct from the Ids used in 𝑝 or any of 𝑝’s sub-

programs (W2); we denote this Id as 𝑖𝑑𝑛 . We can associate

each 𝑛 argument to a recursive call of Interp with a number

𝑤 (𝑖𝑑𝑛). We claim that Interp is primitive recursive under

the lexicographic ordering on (𝑡,𝑤 (𝑖𝑑𝑛)).
To prove this claim we need to demonstrate that if Interp

with time and node arguments 𝑡 ′ and 𝑛′ makes a recursive

call to Interpwith time and node arguments 𝑡 ′′ and 𝑛′′, then
the following condition holds:

𝑡 ′′ < 𝑡 ′ ∨
(
𝑡 ′′ = 𝑡 ′ ∧𝑤 (𝑖𝑑𝑛′′ ) < 𝑤 (𝑖𝑑𝑛′ )

)
. (1)

To do this it suffices to examine each case of Interp’s defini-

tion.

When 𝑛′ is a BV constant, Interpmakes no recursive calls,

and the condition in Equation (1) holds vacuously.

When 𝑛′ is a Reg node Interp either terminates (when

𝑡 ′ = 0) or makes a recursive call with time value 𝑡 ′′ = 𝑡 ′ − 1,

maintaining the condition in Equation (1).

When𝑛′ is an operator node, Interp recursively interprets
the operands with time arguments 𝑡 ′′ = 𝑡 ′. However, each
operand’s id 𝑖𝑑 ′′ belongs to inputs(𝑛′), and, by Property 1,

𝑤 (𝑖𝑑𝑛′ ) > 𝑤 (𝑖𝑑 ′′), so our condition holds.

This leaves us with the less obvious cases in which 𝑛′

is either a Prim or Var, which work together in tandem.

When 𝑛′ = Prim 𝑏𝑠 𝑝′, Interp makes a recursive call with

node argument 𝑝′ .𝑟𝑜𝑜𝑡 and time argument 𝑡 . By Property 1,

𝑤 (𝑝′ .𝑟𝑜𝑜𝑡) < 𝑤 (𝑖𝑑𝑛′ ), and the condition in Equation (1)

holds. Interp also defines a new environment for execution

of 𝑝′ via _-abstraction, and this in turn will recursively in-

voke Interp. These environments are only invoked by the

rule for variables, which we handle presently.

When 𝑛′ = Var 𝑥 , the environment is invoked on variable

𝑥 . Here, there are two possible cases. First, we are interpret-

ing the top-level program 𝑝 . As this is the initial, top-level en-

vironment, there is no further recursion. Second, we are inter-

preting a sub-program 𝑝′ and 𝑒′ 𝑥 𝑡 = Interp 𝑝 𝑒 𝑡 (𝑝 [𝑏𝑠 𝑥])
is actually a recursive call into the program 𝑝 one level up,

with its environment 𝑒 . In this latter case, note that 𝑤 is

defined such that𝑤 (𝑖𝑑𝑝 [𝑏𝑠 𝑥 ]) = 𝑤 (𝑏𝑠 𝑥) < 𝑤 (𝑖𝑑Var 𝑥 ) (item
3 of Property 1), satisfying our property. All cases are com-

plete. □

From this, we conclude that all possible substitutions for

Ψ are attempted, and 𝑓lr is sketch-complete.

Trusted Computing Base. The trusted computing base

(TCB) of a system is the set of components it assumes to be

correct [29]. A bug anywhere in the TCB could cause the

guarantees made by that system to be violated. Lakeroad’s

TCB includes: Rosette and the underlying SAT/SMT solvers

that Rosette queries (Bitwuzla, cvc5, Yices2, and STP); the

internal Yosys passes Lakeroad uses to extract primitive se-

mantics and translate design specifications from behavioral

Verilog into ℒbeh; the semantics for ℒlr, which we assume

conservatively models non-cyclic (DAG) designs; our code

to translate from the ℒstruct to structural Verilog; and the

vendor-provided Verilog simulation models for FPGA primi-

tives. Each TCB component has also been thoroughly tested,

as described in Section 5. Importantly, sketches and sketch

generation are not in Lakeroad’s TCB: even if there were a

bug in Lakeroad’s sketch-related components, it would not

violate Lakeroad’s correctness guarantees.

3.5 Multiple Clock Cycle Guarantees with 𝑓 ∗
lr

The preceding completeness and correctness properties for

𝑓lr guarantee that running the synthesized program 𝑝 and

the design 𝑑 for 𝑡 clock cycles produces the same output. To

extend this guarantee, Lakeroad supports a form of bounded

model checking, where synthesis ensures that 𝑝 is semanti-

cally equivalent to 𝑑 for 𝑐 additional clock cycles starting at

time 𝑡 . We formalize this with the function 𝑓 ∗
lr
, which takes

a sketch Ψ, a behavioral design 𝑑 , a number of clock cycles

𝑡 , and a model checking time bound 𝑐 ≥ 0 and returns an

implementation 𝑝 ∈ ℒstruct that is equivalent to 𝑑 at time

steps 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑐 .
Our correctness and completeness guarantees are similar

to those for 𝑓lr:

𝑝.𝑓 𝑣 = 𝑑.𝑓 𝑣 ∧
∀𝑒 𝑠.𝑡 . domain(𝑒) = 𝑝.𝑓 𝑣,

𝑖=𝑡+𝑐∧
𝑖=𝑡

Interp 𝑝 𝑒 𝑖 𝑝.𝑟𝑜𝑜𝑡 = Interp 𝑑 𝑒 𝑖 𝑑.𝑟𝑜𝑜𝑡 .

3.6 Beyond Lakeroad

ℒlr, its semantics, and the synthesis approach we describe

here are useful for applying program synthesis to other hard-

ware design problems. For example, the synthesis problem

detailed above could be “flipped” to decompile structural

designs back to higher-level behavorial designs, i.e., synthe-

sizing from ℒstruct to an expression in ℒbeh. Such decom-

pilation has seen recent interest for recovering equivalent

but faster-to-simulate models and for porting models across

different architectures [40]. As another example, the syn-

thesis approach could be adapted to help port designs by

synthesizing expressions in ℒstruct that use one set of prim-

itives on one architecture from other designs in ℒstruct that

use a different set of primitives from a different architecture.

Thus, the formalization in this section transcends the partic-

ular challenges of FPGA technology and provides a reusable

foundation for exploring a much broader range of hardware

design challenges from a program synthesis perspective.
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implementations:
- interface: { name: LUT, num_inputs: 4 }

internal_data: { sram: 16 }
modules:

- module_name: frac_lut4
filepath: SOFA/frac_lut4.v
ports:

- { name: in, direction: in, width: 4,
value: (concat I3 I2 I1 I0) }

- { name: mode, direction: in,
width: 1, value: (bv 0 1) }

- { name: lut4_out, direction: out,
width: 1 }

parameters: [{ name: sram, value: sram }]
outputs: { O: lut4_out }

Figure 5. SOFA architecture description.

4 Implementation

Lakeroad is composed of approximately 13K lines of Racket

plus approximately 58K lines of Racket automatically gener-

ated from vendor-supplied Verilog. Vendor-supplied Verilog

was obtained from Lattice Diamond, Intel Quartus, and Xil-

inx Vivado sources. We used Vivado version v2023.1, Quar-

tus 22.1std.1 Build 917 02/14/2023 SC Lite Edition, Diamond

version 3.12, Yosys version 0.36+42 (commit 70d3531), the
cvc5 [8] and Yices2 [18, 19] solvers included in the 2023-08-

06 release of oss-cad-suite from YosysHQ, the Bitwuzla

solver at commit b655bc0 [32], the STP solver at commit

0510509a, Racket version 8.9 [20, 21], and Rosette version

4.1 [36].

4.1 Primitive Interfaces

As described in Section 2, primitive interfaces describe ab-

stract versions of common FPGA primitives, which allow

sketch templates to be architecture-independent. To date,

Lakeroad declares primitive interfaces for 𝑛-input LUTs,𝑤-

width carry chains, 𝑛-input muxes, and DSPs with up to four

data inputs and one clock input. The next section includes

a concrete example of Lakeroad’s LUT4 primitive interface.

4.2 Architecture Descriptions

As described in Section 2, architecture descriptions convey the

information required to convert each instance of a primitive

interface into the corresponding architecture-specific mod-

ule, which occurs while converting sketch templates into

sketches. The architecture description is the only additional

input that may be required from a user to support a new

architecture; it is a one-time effort that is reusable for any

designs in an architecture. Architecture descriptions are sim-

ply lists (provided as YAML files) of the primitive interfaces

that an architecture implements, but, crucially, also include

architecture-specific port and parameter values in a map

called internal_data. Values in this map become symbolic

values solvable by the SMT solver. Additional constraints can

also be specified in the architecture description to rule out in-

valid configurations and minimize the solver’s search space.

As an example, Figure 5 shows the architecture descrip-

tion for the SOFA [43] FPGA architecture. The description

contains a single primitive interface implementation, i.e.,

LUT4. Lakeroad’s LUT4 primitive interface standardizes the

names of a LUT4’s inputs and outputs, naming the inputs I0
through I3 and the output O. The SOFA implementation of

the LUT4 primitive interface uses the SOFA-specific frac_-
lut4 primitive. Primitive interface inputs I0 through I3 are

mapped to the actual input port of the frac_lut4, named

in. Likewise, the frac_lut4 output lut4_out is mapped

to the primitive interface output O. The internal_data
field declares sram, the LUT’s 16-bit internal memory, as

an architecture-specific detail to be solved during synthesis.

If a sketch template uses a primitive interface not included

in the architecture description (e.g., SOFA does not imple-

ment carries), Lakeroad may still be able to implement the

primitive interface based on primitive interfaces the architec-

ture does implement. To date, Lakeroad can implement any

mux with LUTs, a larger LUT from smaller LUTs, a smaller

LUT from a larger LUT, a carry from LUTs, and a smaller

DSP from a larger DSP; it handles these conversions during

sketch generation.

4.3 Sketch Templates, Sketches, and Sketch

Generation

As described in Section 2, Lakeroad captures common FPGA

implementation patterns in reusable, architecture-independent

sketch templates. Thus far, we have described only the rela-

tively simple dsp sketch template, which instantiates a DSP.

As a more complex example of capturing common FPGA im-

plementation patterns, consider the bitwise-with-carry
sketch template, which uses 𝑛 LUTs and a carry chain to

implement designs such as addition or subtraction. As of

the paper’s publication date, Lakeroad provides 5 sketch

templates: dsp, bitwise, bitwise-with-carry, compari-
son (LUT- and carry-based arithmetic comparison), and mul-
tiplication (LUT-based multiplication).

The process of converting sketch templates to sketches

is implemented as described in Section 2 and Section 4.2.

Lakeroad iterates over every primitive interface instance

in the sketch and replaces it with the concrete primitive in

accordance with the architecture’s architecture description.

If the architecture description does not implement the re-

quested primitive interface, Lakeroad checks whether it can

implement the primitive interface with other implemented

interfaces (e.g., implementing a smaller LUT with a larger

LUT) and raises an error otherwise.

Sketch templates and sketches alike arewritten in a domain-

specific language (DSL) embedded into Rosette, whose im-

plementation closely mirrors the syntax and semantics of

ℒlr. The only significant difference is that the interpreter

10
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implementation does not use bitvector streams natively. In-

stead, each invocation of the interpreter represents a sin-

gle timestep, and all intermediate values from the previous

timestep are taken as input. Streams are then built up using

multiple invocations of the interpreter.

4.4 Importing Semantics from Verilog Modules

Lakeroad uses Yosys [50] to convert Verilog modules into

the btor2 format [33] and then converts the resulting btor2
to Rosette/Racket code.

Due to the semantics of the Verilog language and the in-

ternal implementation of Yosys, extracting semantics from

Verilog modules may require the following manual modifi-

cations to accommodate semantics extraction and synthesis:

• As Yosys converts parameters from variables to constant

values immediately upon module import, module parame-

ters should be converted to ports to ensure they remain

variables (and thus solvable by the SMT solver). Note that

not all parameters can always be converted to ports, mean-

ing some parameters cannot be solved for.

• Strings should be converted to bitvectors.

• All registers should be initialized.

• All instances of x and z values should be converted to

2-state logic (0 or 1).

Note that these caveats apply only to our prototype imple-

mentation, not the general technique of semantics extraction

from HDL. Once these manual modifications are made, the

following series of Yosys passes can be used to convert the

Verilog into suitable btor2: prep; flatten; pmuxtree;
opt_muxtree; clk2fflogic; prep; write_btor.

We implement the translation from btor2 to Rosette bitvec-
tor expressions as a 1:1 translation since both languages are

simply operations over bitvectors.

4.5 Program Synthesis and Compilation to Verilog

We implement the synthesis procedure defined in Section 3.4

with Rosette. Multiple clock cycle guarantees, as described

in Section 3.5, are implemented simply by making 𝑐 + 1 total

assertions, asserting the output of the input design and the

sketch are equal after each of the 𝑐 + 1 timesteps. We use a

portfolio solving method, running Bitwuzla [31], cvc5 [8],

Yices2 [18, 19], and STP [5] in parallel and using results from

the first solver to terminate. To produce Verilog, Lakeroad

compiles the program from its internal DSL to the JSON

format defined by Yosys using a straightforward translation

and then uses Yosys to output Verilog.

4.6 Integration with Other Tools

This paper describes Lakeroad as a standalone tool, but the

core Lakeroad implementation could be integrated directly

into existing tools. Though out of scope for this paper, we

have early, encouraging results integrating Lakeroad as a

Yosys pass that lets users tag modules with annotations

similar to (and much richer than) Xilinx’s use_dsp anno-

tation. We then map annotated modules to primitives using

Lakeroad, which let us easily apply Lakeroad to many frag-

ments within a larger design. We plan to more fully integrate

Lakeroad into Yosys in future work, which should radically

improve the completeness of Yosys’s DSP mapping ability,

as shown in Figure 6.

5 Evaluation

We now evaluate Lakeroad in terms of completeness and

extensibility. In the following experiments, we target four

FPGA architectures: Xilinx UltraScale+, commonly used

for large, high-performance workloads; Lattice ECP5, com-

monly used in low-power, low-cost scenarios; Intel Cyclone

10 LP, an FPGA designed for low-cost, high-volume use

cases, and SOFA [43], a recent, open-source FPGA devel-

oped by the research community. We compare Lakeroad to

existing technology mappers. For Xilinx Ultrascale+, Lat-

tice ECP5, and Intel Cyclone 10 LP, we compare Lakeroad

against both the open source toolchain Yosys [50] and the

state-of-the-art, proprietary, closed source toolchains for

each architecture.
7
The experiments were conducted on a

system running Ubuntu 20.04.3 with an AMD EPYC 7702P

64-Core CPU. The resident set size of a single Lakeroad pro-

cess did not exceed 300MB while running our evaluation.

We use the software versions listed in Section 4.

5.1 Lakeroad Completeness

The reliance of many technology mappers, including state-

of-the-art tools, on hand-written patterns leads them to fail

when attempting to map many workloads that should be

mapped to a single DSP. In particular, the process of partial

design mapping (illustrated in Section 2) becomes a labo-

rious endeavor because of this incompleteness: hardware

designers hand-instantiate DSPs rather than rely on substan-

dard automated tooling, repeating the work each time they

identify a potential opportunity to use a DSP. Lakeroad’s

greater mapping completeness significantly reduces the bur-

den on hardware designers during partial design mapping

and marks the first step in automated mapping for full de-

signs. We next evaluate how Lakeroad’s program synthesis

approach enables it to achieve greater completeness for these

program fragments.

Evaluation Setup. We highlight three particularly com-

plex DSPs for the Xilinx Ultrascale+, Lattice ECP5, and Intel

Cyclone 10 LP architectures: the Xilinx DSP48E2, Lattice

ALU54A/MULT18X18C (a single DSP composed of two prim-

itives), and Intel cyclone10lp_mac_mult. SOFA provides no

DSP, and is not included in this part of the evaluation. For

each architecture’s DSP, we enumerate a large subset of the

7
Again, licensing restrictions prevent our naming the specific proprietary

tools, but they are familiar, standard packages used by many hardware

designers.
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designs theoretically mappable to a single DSP according to

its configuration manual. This microbenchmark set aims to

capture the real-world designs which hardware designers

would attempt to map to a platform’s DSP. For each architec-

ture, we compare Lakeroad to both the corresponding state-

of-the-art toolchain for the architecture as well as to Yosys.

For Xilinx Ultrascale+, the DSP48E2 configuration manual

details the structure of designs mappable to the primitive.

Our designs for Xilinx include all permutations of the design

form ((𝑎±𝑏)∗𝑐)⊙𝑑 , where ⊙ ∈ {&, |,±, ⊕}, as well as designs
of the forms (𝑎∗𝑏) and ((𝑎∗𝑏)±𝑐). We pipeline each of these

workloads from zero to three stages and use bitwidths from

8 to 18 bits. For the DSP on Lattice, we similarly enumerate

all designs of the form (𝑎 ∗𝑏) ⊙𝑐 , where ⊙ ∈ {&, |, ⊕,±}, and
of the form (𝑎 ∗ 𝑏). For each of these designs, we use zero

to two stages and bitwidths from 8 to 18 bits. This results in

1320 microbenchmarks for Xilinx UltraScale+, 396 for Lattice

ECP5, and 66 for Intel Cyclone 10 LP. Though Lakeroad’s

output is correct by construction, we further validate its

output by simulating each Lakeroad-compiled design over

thousands of consecutive cycles using Verilator.

Comparison to Existing Toolchains. As demonstrated

in Figure 6 (top), Lakeroadmaps 44×more designs than Yosys

and 2.1× more designs than the proprietary, state-of-the-art

toolchain on Xilinx Ultrascale+. On Lattice ECP5, Lakeroad

maps 6.0× more designs than Yosys and 3.6× more designs

than the proprietary, state-of-the-art toolchain. On Intel Cy-

clone 10 LP, Lakeroad successfully maps all designs: 3×more

designs than the proprietary, state-of-the-art toolchain for

Intel. Yosys fails to map a single design on Intel. State-of-

the-art toolchains for all architectures fail to map more than

half of the queried designs. Lakeroad times out on less than

20% of designs.
8
Note that Lakeroad returns “UNSAT” on ap-

proximately 260 designs on UltraScale+, i.e., Lakeroad claims

there is no possible mapping to a DSP48E2 for the requested

workload. In all of these cases, both Xilinx SOTA and Yosys

agree with Lakeroad and do not map the designs to a single

DSP. We conclude that the set of designs we presented in

Evaluation Setup must be overly broad; though the documen-

tation implies that all of these designs are mappable to a

single DSP, all three Xilinx synthesis tools surveyed indicate

that they are indeed not mappable.

For timing, we compared the mapping time for each of

the tools and report the results in Figure 6 (bottom). The

wide ranges for Lakeroad show that solver time for differ-

ent program synthesis queries is highly variable. This is

explored more deeply in Figure 7, which shows that most

synthesis queries terminate quickly, with a long tail of slower

queries. Note that the state-of-the-art technology mapper for

8
We restricted Rosette synthesis time to 120 seconds, 40 seconds, and 20

seconds for Xilinx, Lattice, and Intel respectively, and marked failure past

that (though bitvector synthesis problems are decidable).

Ultrascale+ has a slow running time due to its long start-up

process.

Regarding which solvers in the portfolio were most useful,

of all terminating (success or UNSAT) Lakeroad experiments,

Bitwuzla was the first to complete for 671 of them, STP for

519, Yices2 for 464, and cvc5 for 64.

Lakeroad’s greater completeness directly translates into

resource reduction. On average, for each microbenchmark,

Lakeroad uses 3.9 fewer LEs (logic elements: LUTs, muxes, or

carry chains) and 7.5 fewer registers than the Xilinx SOTA,

7.2 fewer LEs/11.9 fewer registers than the Lattice SOTA, 8.2

fewer LEs/14.3 fewer registers than the Intel SOTA, and 33.3

fewer LEs/11.4 fewer registers than Yosys. In the real world,

the small modules captured by our microbenchmarks may be

reused dozens if not hundreds of times across a large design.

Thus, the sizable resource reduction Lakeroad provides on

a single microbenchmark will be multiplied significantly for

an entire design.

Discussion. Compared to Yosys, it is clear that Lakeroad

provides more complete support for programmable DSPs.

However, Lakeroad’s greater completeness over Yosys is

perhaps not surprising since Yosys is an open-source tool

still under active development. Part of the appeal of the

Yosys toolchain is the diversity of backends it can target;

these results show that, if incorporated into Yosys, Lakeroad

would further increase Yosys’s flexibility and generality. Per-

haps most surprising is that Lakeroad is more complete than

specialized proprietary toolchains. Even the UNSAT results

Lakeroad produces can be useful to designers since they

indicate potential flaws in the documentation or vendor-

provided semantics. In the context of a larger synthesis tool,

Lakeroad would provide stronger guarantees for mapping

modules of larger designs.

5.2 Lakeroad Extensibility and Expressiveness

In addition to being correct by construction (Section 3) and

more complete than existing FPGA technology mappers (Sec-

tion 5.1), Lakeroad can also easily extend to new FPGA archi-

tectures. Furthermore, automatic primitive semantics extrac-

tion from vendor-provided HDL simulation models enables

Lakeroad to support diverse, highly configurable FPGA prim-

itives.

The architecture descriptions vary in length from 20 to 240

source lines of code (SLoC). SOFA (20 SLoC) is the simplest,

shown in full in Figure 5. The descriptions for Xilinx (185

SLoC), Lattice (240 SLoC), and Intel (178 SLoC) are longer

since those FPGA architectures provide a wider range of

configurable primitives.

As a point of comparison, the open-source Yosys toolchain,

which has roughly 200 contributors on GitHub, provides

technology mapping for Xilinx UltraScale+ across over a

dozen complex Verilog, C++, and Python files (about 1300
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Tool Median Time (s) Min / Max Time (s)

Xilinx

Lakeroad 14.99 2.99 127.70

SOTA Xilinx 261.61 227.82 598.67

Yosys 14.97 6.66 21.10

Lattice

Lakeroad 9.49 6.70 55.23

SOTA Lattice 2.32 0.95 4.52

Yosys 2.31 0.90 4.01

Intel

Lakeroad 2.92 2.12 4.13

SOTA Intel 38.73 19.11 43.49

Yosys 0.96 0.48 1.88

Figure 6. Results of the completeness experiments described

in Section 5.1, measuring the completeness of technology

mapping tools for DSPs on Xilinx UltraScale+ and Lattice

ECP5, plus timing information. A single bar in the bar chart

communicates, for a given FPGA architecture and technol-

ogy mapper, the proportion of the microbenchmarks that

the given technology mapper could map to a single DSP. In

Lakeroad’s case, experiments can either succeed (Lakeroad

maps the microbenchmark to a single DSP), timeout, or re-

turn UNSAT. For the other tools, experiments can either

succeed or fail (i.e., the tool returns a mapping, but the map-

ping uses more than a single DSP). There are a total of 1320

experiments/microbenchmarks for Xilinx, 396 for Lattice,

and 66 for Intel.

lines of code). We cannot provide similar numbers for state-

of-the-art proprietary tools, but a developer of one such

technology mapper shared that extending their tool to sup-

port new FPGA architectures was extremely difficult since it

“spans millions of lines of low-level C.” This is not surprising;

Yosys aims to target a variety of vendor architectures, while

proprietary tools have teams of engineers to extract better

mapping (evident by Yosys’ limitations in Section 5.1). By

contrast, Lakeroad supports diverse architectures and is easy

to extend. Even if a user wants to target a completely new

architecture that Lakeroad does not support, architecture-

independent sketch templates allow reuse of previously im-

plemented mapping strategies, and the user is only required

Figure 7. Histograms of Lakeroad program synthesis run-

time for all terminating (success or UNSAT) Lakeroad ex-

periments described in Section 5.1, with timeout thresholds

indicated with a vertical dotted red line.

Table 1. FPGA primitives imported automatically by

Lakeroad from vendor-provided Verilog models, with num-

ber of source lines of code (excluding comments and empty

lines) of the original Verilog models.

FPGA Primitive Verilog SLoC

Xilinx Ultrascale+ LUT6 88

CARRY8 23

DSP48E2 896

Lattice ECP5 LUT2 5

LUT4 7

CCU2C 60

ALU54A 1642

MULT18X18C 795

Intel Cyclone 10 LP cyclone10lp_mac_mult 319

SOFA frac_lut4 69

to provide a few lines of high-level configuration for each

primitive in the architecture description.

Table 1 further highlights Lakeroad’s expressiveness, i.e.,

its ability to support a diverse range of configurable prim-

itives by automatically extracting semantics from vendor-

provided HDL simulation models. Lakeroad can import the

semantics of large configurable primitives, such as the Ultra-

Scale+ DSP (896 lines of Verilog) or Lattice ECP5’s ALU and

multiplier units (1642 and 795 lines of Verilog, respectively).

It is difficult and error-prone to manually formalize the full

semantics for these primitives; partial support by ad hoc

search procedures that rely on syntactic pattern matching

leads to missing many mapping opportunities, as shown in

Section 5.1.
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6 Related Work

To the best of our knowledge, Lakeroad is the first work to

apply the technique of program synthesis to FPGA technol-

ogy mapping. Indeed, as noted by Sisco et al. [39], program

synthesis has seldom been applied in the domain of hardware

design although its underlying formal methods techniques

are frequently used for the formal verification of hardware

designs rather than compilation, as in Bluespec SystemVer-

ilog [34], Kôika [12], and Kami [15]. Sisco et al. cite two

examples of works that use program synthesis for hardware

design, Verisketch [7] and Sketchilog [9], both of which ap-

ply program synthesis to produce HDL implementations

from high-level designs. Other works use program synthesis

to generate software that runs on low-powered hardware,

like Chlorophyll [35], which targets extremely memory-

constrained power-efficient processors, Chipmunk [22], which

targets programmable network switches, andDiospyros [48],
9

which generates vectorized programs for standalone digi-

tal signal processors (more powerful and general-purpose

devices than the DSP units in FPGAs). These works demon-

strate the utility of program synthesis for generating code

that handles specific wrinkles in hardware designs, as does

the use of program synthesis in Lakeroad to harness the

programmability of FPGA DSPs.

Lakeroad is also related to past work in FPGA compilation

and techmapping, much of which does not entreaty to sup-

port programmable DSPswith asmuch generality. ODIN [26]

and ODIN-II [25] are used in hard-block synthesis for FPGAs,

which is the task of mapping portions of hardware designs to

specialized units (hard blocks) like multipliers. They operate

purely over syntax (e.g., mapping * to a multiplier) and so

are greatly limited in their ability to handle programmable

DSPs. The ABC [14] logic synthesis tool is used to lower

hardware designs into LUT and carry-chain configurations;

it is related to Lakeroad in that it also uses constraint solvers

to find configurations, though it is not general enough to

handle a wide variety of programmable DSPs, unlike the

program synthesis techniques used in Lakeroad. Note also

that the use of configuration files in Lakeroad to abstract

away details of the FPGA architecture was inspired by past

work in FPGA compilation, including OpenFPGA [42] and

the Verilog-to-Routing project (VTR) [38], both of which

use abstract architecture descriptions to facilitate portability

across designs, though these projects are limited in their sup-

port for DSPs. Library-Parameterized Models [3, 6] define

generic interfaces for common primitives and are also similar

to Lakeroad’s primitive interfaces, though they are limited

in their ability to represent configurable units like DSPs.

9
Diospyros uses symbolic evaluation, which is related to program synthesis,

to lift imperative programs for digital signal processors into a high-level

mathematical representation that can then be used with the technique of

equality saturation [44] to generate optimized code for the target devices.

This is also distinct from the program synthesis techniques referenced

elsewhere in this paper.

Virtual FPGA overlays [13, 27, 28] are another approach

to improving the mapping of hardware designs to hardware.

Overlays present a “virtual” FPGA architecture; each ac-

tual architecture must then define a mapping from virtual

to actual primitives. This required translation is similar to

Lakeroad’s requirement on users to implement primitive in-

terfaces in an architecture description, though it requires

more user effort. The translation from virtual to actual archi-

tecture often comes with a steep resource and performance

overhead.

7 Conclusion

This paper presents Lakeroad, a novel approach to FPGA

technology mapping that leverages program synthesis tech-

niques to provide stronger correctness and completeness

guarantees than state-of-the-art tools. Because program syn-

thesis tools can efficiently explore large search spaces, Lakeroad

can find mappings of hardware designs to FPGA DSPs in

more cases than state-of-the-art tools, often finding more

efficient implementations in the process. With our tech-

niques of semantics extraction from HDL and architecture-

independent sketch templates, users must expend little man-

ual effort to apply Lakeroad to a given FPGA architecture

and extend it to handle further primitives. Moreover, our

formalization of Lakeroad fosters greater confidence in its

correctness. Lakeroad hence enables the extensible, efficient,

and correct lowering of hardware designs to FPGAs, high-

lighting the effectiveness of program synthesis for FPGA

technology mapping.
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