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Abstract

Compiler backends' should be automatically generated from
hardware design language (HDL) models of the hardware
they target. Generating compiler components directly from
HDL can provide stronger correctness guarantees, ease de-
velopment effort, and encourage hardware exploration. Past
work has already championed this idea; here we argue that
advances in program synthesis make the approach more fea-
sible. We present a concrete example by demonstrating how
FPGA technology mappers can be automatically generated
from SystemVerilog models of an FPGA’s primitives using
program synthesis.
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1 Our Position

The semantics of HDLs are very rich. From the advanced
type systems of new languages such as Aetherling [9] or
Filament [13], to the high-level, algorithmic expressiveness
of High Level Synthesis, hardware design languages convey
much useful information about the hardware they describe.
Even stalwart SystemVerilog and VHDL accurately capture

We broadly define a compiler backend as any program that modifies, op-
timizes, or lowers high-level, hardware-independent code into low-level,
hardware-specific code. This broad definition includes software compilers
like gcc and libraries like CUDA, but also hardware compilers like FPGA
synthesis or High-Level Synthesis (HLS) tools.
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Figure 1. How the components of a software/hardware
toolchain for a piece of hardware are built today: current
state of the world (left) vs. according to our position (right).

a precise description of how a hardware design functions,
including the ability to specify low-level details like latency.

Despite its richness, the HDL description of a hardware
design is currently only used by the lowest layers of the
software/hardware toolchain. Figure 1 (left) visualizes this.
The HDL model of a design is used to build simulators and
compile the final fabricated design, but the same model is
not used when building higher-level toolchain components
such as code optimizers or instruction selectors. Instead,
these parts of the toolchain often contain handwritten (and
sometimes implicit) models of the target hardware, e.g., a
model of the hardware’s memory hierarchy built into the
optimizer.

It is our position that compiler backends should be au-
tomatically generated from the HDL model of the tar-
get hardware. Automatically generating compiler backends
(1) provides stronger correctness guarantees as com-
piler components no longer rely on handwritten, implicit,
potentially buggy models of hardware. Instead, compiler
backends would rely on the same HDL source from which
the hardware is fabricated, guaranteeing that the compiler’s
hardware model matches the fabricated hardware. For simi-
lar reasons, automatically generating compiler backends (2)
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reduces compiler development effort by removing the
need to build a duplicate hardware model into the compiler
backend. Lastly, we believe this approach (3) encourages
hardware exploration. By providing more confidence in
the correctness of the toolchain and reducing the burden
of building a compiler for a new piece of hardware, hard-
ware designers will be emboldened to experiment with new
designs.

Furthermore, it is our position that recent advances in
programming languages make automated compiler
construction feasible. The idea of automatically generat-
ing compiler backends is not new: previous work includes
synthesizing instruction selectors [3, 6-8] and code genera-
tors [4, 11], among other work. However, much of this work
is a decade old, if not more, and does not benefit from ad-
vances in languages and type systems for hardware [9, 12, 13],
equational reasoning via equality saturation [17, 19], pro-
gram synthesis [15, 18], and machine learning for program
generation [1, 2].

To ground our position, we present a concrete example,
in which we use SystemVerilog models of FPGA primitives
to automatically build technology mappers using modern
program synthesis techniques.

2 Generating Technology Mappers

Technology mapping is an FPGA compiler backend step
in which a high-level hardware design is lowered to use
hardware primitives (small functional blocks) available on
the target FPGA. Currently, technology mappers are often
implemented as hand-written pattern matchers, which look
for patterns in high-level HDL code and rewrite them to
instances of FPGA primitives.2 Some automation does exist;
the VTR project [14] seeks to automatically provide compiler
backends for hardware given just an architecture description
using tools like ABC [5] and ODIN-II [10].

Existing technology mapping approaches—hand-written
pattern matchers and automated tools—have a number of
weaknesses. They fail to provide strong correctness guaran-
tees: hand-written patterns can be incorrect. They require
significant developer effort: when an automated tool cannot
support an FPGA primitive, developers must support the
primitive by hand. Finally, current tools limit exploration:
each new FPGA primitive represents a potentially high cost
to support.

We have prototyped a tool which generates technology
mappers automatically from the HDL models of the target
FPGA. Our tool automatically extracts bitvector semantics
from the SystemVerilog models of FPGA primitives provided
by each FPGA vendor. We then apply program synthesis, a

2For one example of these patterns in the open-source FPGA com-
pilation tool Yosys [20], see https://github.com/YosysHQ/yosys/blob/
cee3ch31b98e3b67af3165969c8cfc0616c37e19/techlibs/xilinx/xcu_dsp_
map.v
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Table 1. FPGA primitives imported automatically (and thus
available for technology mapping) from vendor-provided
SystemVerilog models, with source lines of code of the origi-
nal SystemVerilog models.

FPGA Primitive SystemVerilog
Xilinx Ultrascale+ LUT6 88
CARRY8 23

DSP48E2 1426

Lattice ECP5 LUT2 5
LUT4 7

Ccuz2C 60

ALU24B 672

MULT18X18D 985

SOFA [16] frac_lut4 69
Intel Cyclone altmult_accum 1460

technique which utilizes SMT solvers to generate programs.
We use the bitvector semantics extracted from each primi-
tive’s SystemVerilog model to check—with the help of the
solver—whether the primitive can be configured to imple-
ment the input high-level hardware design. Furthermore,
we build an intermediate representation which allows for
the construction of platform-independent templates, which
capture patterns common across FPGA architectures.

Our prototype approach to technology mapping provides
strong correctness guarantees, reduces development effort,
and can support hardware exploration. Our approach’s strong
correctness guarantees come not only from our use of SMT
solvers, but also from the fact that we use the primitive se-
mantics extracted directly from SystemVerilog, rather than
relying on handwritten, and potentially incorrect, seman-
tics. We quantify our approach’s reduction of development
effort by listing the primitives automatically imported (and
thus supported) by our tool in table 1. Finally, our approach
can encourage the exploration of new FPGA primitives, by
quickly generating technology mappers for hardware proto-
types during the development process.

3 Conclusion and Future Directions

We have argued that compiler backends should be auto-
matically generated from the HDL models of the hardware
they target. Furthermore, we provided a concrete demonstra-
tion of this idea via a prototype tool which generates FPGA
technology mappers given the SystemVerilog models of an
FPGA’s hardware primitives.

We call on others in the field to revive this idea with us
via the application of modern techniques, such as machine
learning or equational reasoning via equality saturation.
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