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Application of Sketch Guided Synthesis to Runtime

Reconfigurable FPGA Primitives

VISHAL CANUMALLA, University of Washington, USA

FPGA technology mapping is a critical step in hardware compilation; from high-level hardware design descrip-

tions, toolchains must find an equivalent low-level implementation on the target FPGA’s primitives. FPGAs

are becoming increasingly heterogeneous via the addition of new, highly configurable primitives with com-

plex behaviors. Effectively utilizing these primitives can produce orders of magnitude better performance,

meaning robust technology mapping is more important than ever. Current automated approaches for tech-

nology mapping work for simple primitives, but fall short when tasked to map modern complex primitives.

This is because configuring these primitives requires tools which can understand and utilize their complex be-

havior, such as pipelined arithmetic or runtime reconfigurability. Put simply: configuring modern, complex

FPGA primitives is equivalent to synthesizing programs. Consequently, ongoing work—Lakeroad—applies

program synthesis to address this mapping gap by using semantics extracted from Verilog descriptions of

primitives. However, Lakeroad’s compilation flow still requires adding support for new primitives to the tool,

and it is unclear whether this approach will be extensible to increasingly diverse complex primitives.

In this paper, we identify the CFGLUT5 as a primitive that thoroughly demonstrates the extensibility of

Lakeroad while also highlighting the limitations of the approach as of now. CFGLUT5 is a specialized primitive

by Xilinx, that has behavior currently unrealized in Lakeroad’s primitive library. The difficulty of mapping

to the primitive is evident, as it is not supported by any compiler, including Xilinx’s own proprietary tool-

chain Vivado. We show the promise of Lakeroad’s approach by mapping a variety of common operations to

CFGLUT5, and elaborate on ongoing work and limitations.

CCS Concepts: •Hardware→Hardware description languages and compilation; • Theory of compu-

tation→ Automated reasoning.

Additional Key Words and Phrases: Program Synthesis, FPGA, Technology Mapping, High-level Synthesis

1 INTRODUCTION

Compiling a workload to an FPGA is an important and challenging endeavor. FPGAs offer a wide
range of customization and specialization for consumers looking to accelerate workloads due to
their varied set of primitives; small modules effective at a variety of tasks. If aworkload is effectively
mapped to an FPGA’s primitives, users can see orders of magnitude improvement in performance
compared to an un-tuned workload. For users to effectively customize an FPGA for their workload,
FPGAmanufacturers offer sophisticated hardware compilers (such as Xilinx’s Vivado) [4] that sys-
tematically map portions of a hardware design to FPGA primitives, in a process called technology

mapping. Technology mapping is traditionally built into these compilers as a mix of automated
mapping workflows and manually-written syntactic pattern matching, where high-level designs
match pre-written templates for primitive instantiation. Current technology mappers succeed in
effectively mapping to simple primitives, such as the common lookup table (LUT) [3].
However, FPGA manufacturers have recently begun adding new, specialized, highly config-

urable primitives to their ecosystem. Such primitives have complex and programmable behav-
ior, and current tools are incapable of automatically mapping program designs to these primitives.
Thus, compiler engineers graft verbose, handwritten pattern matchers onto the tool-chains, a labo-
rious process that must be repeated for any new primitive. Yet, even handwritten pattern matchers
fall short for some complex primitives. For example, Xilinx offers the CFGLUT5 primitive for their
range of FPGAs, which has the ability to reconfigure itself at runtime. It has primarily been used
in FIR filter designs due to its efficiency and reconfigurability [2, 6]. Despite being more than 10
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years old, Vivado still does not automatically support CFGLUT5. Users must manually instanti-
ate the primitive in their design, which requires thorough understanding of its complex behavior.
It is clear that as more unique and complex primitives are introduced, current methods of support
will not scale, and a more automated approach is needed.

Lakeroad is a new tool that addresses this issue. By utilizing sketch-guided program synthesis,
Lakeroad automatically synthesizes technology mappings to hardware primitives given minimal
user input. Lakeroad automatically extracts formal semantics for hardware primitives from vendor
provided Verilog, and generates implementations of hardware designs from a short, user provided
configuration file. Lakeroad currently supports a variety of simple primitives such as LUTs and
carry chains, as well as more complex primitives such as DSPs. Automated technology mapping
is an enticing feature of Lakeroad, but as more primitives are released by vendors, it is crucial that
Lakeroad is robust enough to support new primitives with minimal effort.
In this work, we evaluate the extensibility of Lakeroad’s approach to semantics extraction and

sketch-guided synthesis, by adding support for the CFGLUT5 primitive. CFGLUT5 was chosen pri-
marily for its runtime reconfigurability, which no primitive in Lakeroad exhibits. Through adding
support for CFGLUT5, we demonstrate the exciting promise of sketch-guided synthesis as an exten-
sible approach to supporting diverse primitives, while also discussing limitations and difficulties
that can be addressed to make the technique even more powerful and automated.

2 APPROACH

Lakeroad applies sketch-guided program synthesis to the technology mapping problem. In short,
program synthesis takes in a formal specification, and outputs a program that abides by the as-
sertions set in the specification. Sketch guided synthesis takes in formal semantics of the working
language, a specification, and sketches with “holes”: empty parts of the program that the synthesis
tool fills in. In Lakeroad, output programs correspond to an FPGA mapping configuration, while
the specification corresponds to the high-level HDL code. A key insight of Lakeroad is to utilize
vendor-provided primitive specifications as the formal semantics to apply synthesis.

From Xilinx’s provided HDL description of CFGLUT5, we ran the Lakeroad importer to obtain
Racket semantics for the primitive, which we then used to synthesize design mappings. CFGLUT5
demonstrated the current limitations of Lakeroad in the import process, which is discussed in detail
in section 3. From the semantics, we wrote sketches for basic bitwise operations on CFGLUT5. These
bitwise operations such as AND, NOT, and OR serve as a litmus test for the validity of the imported
semantics, as we can easily utilize key functional behavior of CFGLUT5. For example, though AND,
NOT, andOR can be trivially implemented in a simple LUT by configuring thememory accordingly,
we can use CFGLUT5’s dynamic reconfigurability to program CFGLUT5’s memory at runtime.

Finally, for full testing of Lakeroad’s synthesis, we attempted to map parts of a design for one of
the most common use cases for CFGLUT5, the reconfigurable FIR filter. In particular, prior work [2]
has found a cluster of CFGLUT5s to be effective at implementing the following function for two
vectors ®2 , ®G of size # .

5 (G̃#
1
) =

#−1∑

==0

2=G=,1 (1)

where = is the =th component of a vector, and G=,1 is the 1th bit of G= .
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Table 1. Comparison of mapping abilities of mapping tools. A ✓ means the the operation (OP) could be

mapped to CFGLUT5 using the specified tool chain. An ✗ means the tool could not map the operation to

CFGLUT5. IP means the process is ongoing, and most likely possible.

OP CFGLUT5 via LR CFGLUT5 via Vivado

NOT ✓ ✗

2AND ✓ ✗

3AND ✓ ✗

2OR ✓ ✗

3OR ✓ ✗

5 (G̃#
1
) IP ✗

3 PRELIMINARY RESULTS

In our initial efforts to support CFGLUT5, we found two points of interest to evaluate Lakeroad’s
effectiveness. First, the amount of manual effort required in semantics extraction, and secondly,
the manual effort required in synthesizing a mapping.
Extracting the semantics of the CFGLUT5 Verilog specification to Lakeroad required manually

adding 36 lines of Verilog to produce complete semantics. Furthermore, the imported semantics
had to be modified to be fully usable, which required adding < 5 lines of Racket code. Overall, the
amount of manual effort beyond what Lakeroad expects from the user was minimal, but critical for
full support. Future work for Lakeroad to avoid this could be building a more complete importer,
rather than solely relying on underlying technlogies like Yosys [11].
For evaluating the extensibility of themapping, we began supportingmultiple operations, shown

in Table 1. It was straightforward to map simple operations to CFGLUT5 using extracted semantics.
We wrote both simple sketches where CFGLUT5 functioned as a normal LUT, as well as sequential
sketches that configured CFGLUT5 over multiple clock cycles. In both cases, Lakeroad was able
to synthesize a mapping. As per Xilinx’s documentation for Vivado, the user must instantiate in-
stances of CFGLUT5 in their design, so by default, no general design canmap to CFGLUT5 via Vivado.
However, Vivado can map these simple operations to simpler primitives, such as general LUTs, en-
couraging us to begin looking at more complex operations. For simple operations where a small
sketch is sufficient, Lakeroad effectively and accurately maps to a new primitive where Xilinx is
unable.
For larger and more complex operations such as that in eq. (1), creating a sketch that Lakeroad

can use to synthesize a mapping was a complex endeavor. Work to synthesize a mapping for this
operation is ongoing. As shown in prior work [2], a correct mapping exists, so a corresponding
sketch template would enable Lakeroad to map this design to CFGLUT5s.

4 FUTURE DIRECTIONS

There are several avenues to further improve Lakeroad’s extensibility. One possibility entails using
a different representation for our HDL specifications, which could improve semantics extraction
and rewriting opportunities. Past work on functional hardware languages has shown that there is
promise in a pure representation [7, 9], and could be adapted to the purpose of Lakeroad.

Related work to Lakeroad has shown the promise of SMT in this space [1], but an issue arises for
Lakeroad when scaling to large designs. Future work could involve using more specialized SMT
solvers, such as Bitwuzla, which specializes in reasoning about bitvectors [5], or applying more
sophisticated compiler techniques such as equality saturation [8, 10] to reduce search-space and
identify new mappings.
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